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1. INTRODUCTION

Gutman [6] was the first who introduced the notion of energy of graphs. He defined the
energy of a simple graph as the sum of the absolute values of its eigenvalues. For
applications of graph energy in chemistry, we refer to [7]. A directed graph (or digraph) D
consists of two finite sets (I, A) where V denotes the vertex-set and A represents the set of
arcs. For two vertices u and v, an arc from u to v is denoted by uv. Two vertices u and v
are said to be adjacent if either uv € A or vu € A. A directed path (respectively, directed
cycle) on n vertices is denoted by P, (respectively, C,). Let {vy, ..., v,,} be the vertex-set of
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a directed path B, and also of a directed cycle C,,. Then the sets {vyvy41 | k=1, ..., n — 1}
and {vyvi41 | k=1,..,n—1} U {v,v,} are the arc-sets of B, and C,,, respectively.

For a vertex v € V(D), the set of in-neighbors of v is defined as Np-(v) = {u €
V(D) | uv € A(D)}. Similarly, Np+(v) ={u € V(D) | vu € A(D)} is the set of out-
neighbors of u. The in-degree and out-degree of v are the cardinality of Np-(v) and
Np+(v), respectively. A digraph with this property that |Np-(v)| = |[Np+(v)| = 1, for
each v € V(D), is called a linear-digraph. A class of digraphs U, is said to be a class of
unicyclic digraphs if each digraph in U,, contains a unique directed cycle. If we remove the
direction of each arc in D then the resulting graph is called underlying graph of D, which
we denote it by D;. A digraph D is said to be weakly connected if D, is connected.
Similarly, a digraph D = (V, A) is called strongly connected if for every pair of vertices u
and v it contains PB,,, as a subdigraph, where B,,, is a directed path from u to v. If a digraph
is not connected then its maximal connected subdigraphs are called components. A
strongly connected component of a digraph is called strong component.

The Cartesian product of two digraphs D, = (V4,4;) and D, = (V,, A,) is denoted
by D; X D, and is defined as a digraphs D = (V, A) with vertex-set V = V; XV, and the
arc set A in which A ={(,u)(y,v)|[xy € A;and u =v]or [x =y and uv € A,]}.
The adjacency matrix A(D) = [aif]nxn of an n-vertex digraph D = (V, A) can be defined
as:

_ {1 V;V; € A,
U710 otherwise.

The characteristic polynomial &, (x) = det(xI — A(D)) of the adjacency matrix
A(D) of adigraph D is called the characteristic polynomial of D and its eigenvalues are
called the eigenvalues of D. From definition of adjacency matrix of D, we observe that
A(D) is not necessarily symmetric. Thus, the eigenvalues of a digraph may be complex
number.

The concept of graph energy was extended to digraph by Pefia and Rada [12] and
Adiga et al. [1]. Since the zeros of @, (x) are not necessarily real, the authors in [12]
defined energy for an n-vertex digraph as E(D) = };-,|R(zy)|, where z,, ..., z, are the
zeros of @, (x) and R (z) is the real part of z,. Along with some other useful results the
authors had found digraphs in the set U,, with minimal and maximal energy.

Khan et al. [9] defined a new notion of energy of digraph which they called iota
energy. They defined iota energy of an n-vertex digraph D as E(D) = Y.;-1|3(zy)|, where
Zi, k =1, ...,n are the zeros of &, (x) and J (z;) is the imaginary part of z,. We refer to
[5,8,11], for the extremal and iota energies of bicyclic digraphs.

In this paper, we give a new notion of digraph energy that will be called p-energy.
This is defined as the sum of the absolute values of the product of real and imaginary parts
of its eigenvalues. We find the smallest and the largest p-energy among all n-vertex
digraphs in the set U,, n = 12. It is shown that D,, ,, which is the set of n-vertex digraphs
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with cycles of length h does not possess the increasing property with respect to the quasi
order relation. An upper bound for the p-energy of digraphs were presented. At the end, we
will find few families of p-equienergetic digraphs.

2. p—ENERGY OF DIGRAPHS

Since the adjacency matrix of a digraph D need not to be symmetric, the eigenvalues of D
are not necessarily real. Let z,,...,z, be the eigenvalues of D. The p-energy of D is
defined as follows:

E, = SFL4|R (2030, (2.2)
where R(z,) and J(z,) are respectively, the real and imaginary parts of z,. The
characteristic polynomial of a digraph is given in the following theorem.

Theorem 2.1 ([Theorem 1.2, 3]) Let D be a digraph on n vertices and ®,(x) = x™ +
Yi-1brx™ ¥ be its characteristic polynomial. Then by, = ¥,¢;, (—1)°™P®), where Ly is
the set of all linear subdigraphs L of D with exactly k vertices and comp(L) is the number
of components in L.

Example 2.2. Let D be an acyclic digraph on n vertices. Then by above theorem the
characteristic polynomial of D is given by ®,(x) = x™. This gives that E,(D) = 0.

A digraph D is said to be a symmetric digraph if and only if its adjacency matrix is
equal to the adjacency matrix of its underlying graph. This implies that all eigenvalues of a
symmetric digraph are real. Thus a symmetric digraph has zero p-energy. The converse is
not necessarily true, that is, we have non-symmetric digraphs with zero p-energy. The
following is an example of digraph which supports our assertion.

Figure 1: A non-symmetric digraph.

Example 2.3. Let D be a digraph with 6 vertices, see Figure 1. Then by applying Theorem
2.1, we get ®p(x) =x°% —5x* +6x%—2=(x—1(x+ 1)(x* —4x2 + 2). This gives

Spec(D) = {1, +V2+ V2, V2= V2 }. Thus E,(D) = 0.
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Figure 2: A digraph with three directed cycles.

The following is an example of a digraph with non-zero p-energy.

Example 2.4. Let D be a digraph of order 10, Figure 2. Then applying Theorem 2.1, we
get Pp(x) = x10 —x7 — 2x6 + 2x3 = x3(x® — 1)(x* — 2). This gives Spec(D) =
I —14iV3 V3

1
{03, 42, 4i2e, 28 4} Thus £,(0) = 2

The following formulas are well known and will be useful in finding p-energy
formulas of directed cycles.
cot% if n=1(mod 2),

2 cot% if n=0(mod 2),

2k

Yo |sin— = { (2.2)

n

_ 2km
Yro lcos—| =

2 cot% if n=0(mod 4),
cot% if n=1(mod 2), (2.3)
kZ csc% if n=2(mod 4).

3. p—ENERGY OF DIRECTED CYCLES

Let C,, be a directed cycle of order n, where n > 2. Then by using Theorem 2.1, we get
the characteristic polynomial of C,, as @ (x) = x™ — 1. Thus the spectrum of C,, is given
by:
Spec(C,) = {cosZZ—n +i sinzz—” |k=01,..,n—1 } (3.4)
This gives:
E,(C) = Yo |(cos 2:—”) (sin Zk—n)| = %Zﬁ;é |sin4nﬂ : (3.5)

n

We derive the p-energy formulas of C,, n = 2, considering the following three
cases:

Case 1. If n is an integral multiple of 4 then from (3.5), we have



A New Notion of Energy of Digraphs

Ey(Co) = 2%:) |Sin4:—n| = 22%;3 |sin4:—n
=2(sin(( = 1)) (G - 141) 3 Jese)

= 2cot 2—“.
n

Case 2. If n is a positive integer of the form n = 2 (mod 4) then

-1

n n-—2
2 4k e 2km
— 2 i — 4 ]
Ey,(Cp) = X%, |51n ~ | = 2%, L,sin—

=2 (sin (nT_Z . %) sin ((nT_Z + 1) % )cscg)

I
= cot-.
n

Case 3. Finally, if n is a positive integer of the form n = 1(mod 2) then

1on—1| . 2k lon-1 . k
E,(C) =¥k |smT” =-¥i%0 smf
1 . n-1 =n . n V1 V1
N E(Sm (T ' Z) sin (E' n )CSCE)
=~ cot =,
2 2n
Briefly, we can write
{2 cot%ﬂ if n=0(mod 4),
E,(Cy) = J %cot% if n=1(mod 2),

kcot% if n =2(mod4).

115

(3.6)

Let D € U, be a digraph with cycle C, of length » (2 < r < n). Then by using

Theorem 2.1, we obtain @, (x) = x™ —x"" = x™"" (x" — 1). This yields

Ep (D) = Ep(Cr)-

3.7)

The following lemma will be useful in finding smallest and largest p-energy of
digraphs in the set U,,. We remark that the idea of the proof is taken from Lemma 3.5 [2].

Lemma 3.1. For n > 12, the following sequence is an increasing sequence:

2 cot%ﬂ if n=0(mod 4),
(a,) = %cot% if n =1(mod 2),
kcot% if n =2(mod 4).

Proof. This lemma can be proved easily by proving the following inequalities:

A

2T 1
2 cot— < =cot
n 2 2n+2

T 1 T 2T
< cot— < —cot—— < 2cot— .
n+2 2 2n+6 n+6

(3.8)
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Theorem 3.2. Among all digraphs in the set U, the digraphs which contain a cycle C, or
C, has smallest p-energy. For maximal p-energy, we have the following two cases:
(1) If n € {4,8,12} then a digraph in the set U,, containing a directed cycle of length
n — 1 together with a pendent vertex has largest p-energy.
(2) If n is not in the set {4,8,12} then C,, has largest p-energy.

Proof. Let D be a digraph in the set U,, and C,. be its unique directed cycle, where 2 < r <
n. Then (3.7) implies that E,(D) = E,(C,). From (3.6), it is easy to see that E,(C;) =
E,(C4) = 0. Thus the digraph in the set U,, which contains a directed cycle of length 2 or 4
have smallest p-energy. For largest p-energy, (1) and (2) follow from (3.6) and Lemma
3.1.

Next, we calculate p-energy formulas for a polynomial of the form ¢(x) = x" —

(a + ib). The zeros of ¢ (x) are easy to find and are given by:
1( 0+ 2kn . 9+2kn)
Cos )

x=rh + (¢ sin

where r = va? + b%,a = rcosf, b = rsin 6 and 6 is the principal argument and
k € {0,1,...,h — 1}. This gives:

Fp@() =1t T |(cos ™2) (sin 22|

= Lrk Thzh|cos 2222 (3.9)
If h = 0 (mod 4), then (3.9) gives
E,(¢(x)) = rﬁzg;ﬂ in 2227 = 2 hz | in 22227 (3.10)
Using geometric sum formula and some basic trigonometric identities, we get
Ey,(¢p(x)) = Zr% (sin ( + - 27”) sin (# . 27”) csc%ﬂ + |sin %D
= Zr%( sin%| + cos%cot%ﬂ)
= Zr% sin %l + r% COS%EP(Ch).
If h = 2 (mod4), then (3.9) gives
E,(¢(x)) = r% Z%:) |S 29+4k7‘r| _ hz——1 | . 29+2k7r| (3.11)

Using the geometric sum formula and some basic trigonometric identities, we get
271 .. 26 : . (h-2 ™ T
E,(¢(x)) —rh(|51n7| +51n( +5 E) sin (TZ) cscz)

2
:’r‘h(

.20 20
sm—| + COS—COt—)
h h h
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21, 20 2 0
= 2rh|sin 27| +rh cos%Ep(Ch).
If h =1 (mod2), then (3.9) gives
2 2
Ey(¢(x)) = 27t $pTh |sin 22| =2 v gz |sin 22, (3.12)
If - < 6 < -7 then (3.12) becomes:
1 2 20+km
Ey(¢p(x)) = Erh( sm—| + |51n( )| + Y- | TD (3.13)
Using geometric sum formula and some basic trigonometric identities, we get
E h( ) 26+7T i 29+h+1 n) h—2 n) s
p(P(x)) = —r sm—| sin (7 E>| sm( Tty sm( > csci)

260 260 T
sm—| + |sm(h + h)| + COS(h + Zh) COShCSCE)

= lr'h(
If —~ <6< then (3.12) becomes:
E,(¢p(x)) = %r% (|sin%| + sin( +th—-1+1)- —) sin ((h —-1)- —) cscﬁ)
= %r% (|sin%| + cos—ecotz).

h
If % < 6 < then (3.12) becomes:

By (@00 = 377 (Jsin ]+ sin (52 -+ 55|+ i sin 2252,

Using geometric sum formula and some basic trigonometric identities, we get
Ey(p(x)) = —rh ( 51n—| + |cos (——E)| + sm( +(h-1)- —) sin ((h 2)- —) cscﬁ)
= %r%( sin7| + |cos (76 - —)| + cos (% - %) cosacsci).

h
In summary, we can write E, (¢(x)) by the following formula:

2 2
2rh |sin%| + rﬁcos%Ep(Ch) if h =0 (mod 4),
2 2
rh |sinﬁ| +7rh COSEE »(Ch) if h =2 (mod4),
2
) %rﬁ<u+2005 COS E(Ch)> if h=1(mod 2) and —nSQS—%,
2 (3.14)
%ﬁ(sm |+2cos E(Ch)> if h=1(mod 2) and —%SGS%
12 T 260 T
E rh v+2cosﬁcos E,(Cy) if h=1(mod 2) and ESGSE.
.2 . 260 . 20 . 20 260
where u = |sm—|+|sm (—+E)| —sin=cos~ and v = |sm—|+|cos (——E)| +
h h h h h h h h
O

. (2] T
SIN—COS —.
h h
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4, INTEGRAL REPRESENTATION AND INCREASING PROPERTY
OF P-ENERGY

Another representation of graph energy and digraph energy is the integral representation.
This representation is useful as one can find graph energy and digraph energy without
finding the zeros of its characteristic polynomial. In this section, we study the integral
representation of p-energy of digraphs. For this we will denote the principal value of the

improper integral ffoooF(x)dx by p.v f_ooooF(x)dx. The following theorem is important

and will be useful to represent p-energy of a digraph in integral form. The proof is similar
to the proof of Theorem 3.3 [4].

Theorem 4.1. Let z4, ..., z, be the zeros of a real monic nth degree polynomial ¢(x) and
3 (z) be the imaginary part of z,. Then

113020 | = Thosen(30) ze = 2 pov [7 (12D ax.

Let A be the adjacency matrix of a digraph D and z = x + ¢y be its eigenvalue.
Then it is easy to see that z2 = x2 — y? + 2 xy is an eigenvalue of A? (square of the
adjacency matrix A). That is, R(2)I(z) = %S(zz). This gives E,(D) = %Z’,;llﬁ(z,’()l,
where z, ..., z;, are the eigenvalues of A2.

The following theorem is the integral definition of p-energy of digraphs. The proof
is similar to the proof of Theorem 3.3 [4].

Theorem 4.2. Let A be the adjacency matrix of a digraph D. Then
_ 1 © _ xypr(x)
E,(D) = pv [, (" mes )dx'
where 1 (x) is the characteristic polynomial of A2.

Next we study the increasing property of digraphs in the set D, ,, where D, , is
the set of n-vertex digraphs which contain cycles of order h. The following theorem is
well-known.

Theorem 4.3 (Pena and Rada [13]). Let D be a digraph in the set D,,. Then the
characteristic polynomial of D is:

Op(x) = x" + T (=1)% (D, kh)x"kh,
where c(D, kh) denotes the number of linear subdigraphs of order kh, k = 1,2, ..., lHJ'

The following is the definition of quasi-order relation over D, ,.
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Definition 4.1 (Pena and Rada [13]). Let D, and D, be two digraphs in the set D,, ,. Then,
D; < D, if for every k = 1,2,...,[§J we have ¢(Dy, kh) < c(D,, kh). If D; < D, and
there exists an integer k such that c(D,, kh) < c(D,, kh), then we say that D; < D,. Itis
obvious to see that < satisfies reflexive and transitive property over the set D,, .

The p-energy formulae of directed cycle are known. Next, we find p-energy
formulae for digraph in the set D, .

Theorem 4.4. Let D be a digraph in the set D,, ,. Then
fi(WE,(Cp) + f2(h) if h=2(mod4),
Ep(D) = f3(h)Ep(Ch) + f4-(h) if h =1 (mod 2),
fr(WE,(Cy) + 2f,(h)  if h=0(mod4),
where f;(h), for i = 1,2,3 are functions which depend on the eigenvalues of D.

Proof. Let D be a digraph in the set D, ;, be a digraph. Then applying Theorem 4.3 we get

dp(x) =x" + Zfil(—l)k c(D, kh)x™ ¥ where it is clear from the context that we
write ¢, instead of c(D,kh). Next, let s = [%J and put ®,(x) = 0. Then we obtain
xRS+ Y5 (— DR ¢ xShTRY) = 0. This gives xSt + Y5 o (1) cppxStTRR = 0.
Rearranging the equation we get:

(") + Tiea (D  cp (™) = 0. (4.15)

Forj=1,..,s let xjh = a; + ib; be the zeros of (4.15) and its polar form is:
1 1
Xj = rﬁ(cos 6; + isin Hj)h,
1
where a; =r1;cos6;, b; =r;sinf;, 1, = (a® + b*)z and 6; is the principal argument,
j=1,..,s. Thus, foreachj =1, ...,s and k =0,1,2,.., h— 1 itholds that

Xj =Th (cos (9 th ) + isin (9j+;kn)). (4.16)
Using the above equation, we calculate p- energy of the digraph D as follows:
5,0) = 37 i o () ()
Sy Shzhrk [sin (L)) (@.17)
If h = 0 (mod4) then by usmg (3 14), we get
E,(D) = Y5, 12 (cos ZiE,(Cy) +2 |sm—|) (4.18)

Next, let h = 2 (mod4). Then (4.17) and (3.14) imply that:

E,(D) = Xj=1T; ]2 (cos—E cy + |sm—|) (4.19)
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Finally, if h = 1 (mod 2) then we divide the roots of (4.15) into three types. Type 1 are

the roots xﬁ =a;, + ib;,, j;1 = 1,..,s, of (4.15) for which the principal argument of
a;, + ib; liesin ( —T, ——) Type 2: are the roots x =a;, + ibj, j, = 1,...,s; of (4.15)

for which the principal argument of a;, + ib;, lies in (—g —) Type 3 are the roots

h
Xjs

in (gn) Here s = s; + 55 + s3.
2
E,(D) =3 (53, Bhzdr® [sin (
— 2 . 20, +4km
+ 2o Sl fsin (FE))D
Using (3.15), we get
2
1 = 260 ;
E,(D) = E(Zsl rh (uj1 + 2 cos%cosﬁE (Ch))
(e

+253 P (vjs + 2cosZ cos E Ep (Ch)))'

= a;, + ibs, j3 = 1,...,s3 of (4.15) for which the principal argument of a;, + ib;, lies

29j1+4k7'[

20; +4krr)|

)|+ ey iz s (2

This gives:
E,(D) = (Z]_ il coshcos LE »(Ch) +Z coshcos J2 »(Cr)
+ZS3 cos cos J3E »(Ch)) Ey(Cy)
2
1 26,
+E<Zjllrj.h o 1+Z 2 h|51n jz U]3> (4.20)

In summary, we write
fit(WE,(Ch) + fo(h) if h=2(mod4),
E,(D) = fs(WE,(Cy) + fou(h)  if h=1(mod 2),
fi(ME,(Cr) + 2f,(h)  if h=0(mod4),
where the functions f; (h), f,(h), fs(h) and f,(h) are given below:

fi(h) = $5rtcos>L, fo(h) =33

2
"
h

. 29]'
T]' Sln_,
2
h

2
2 20;
— h 11 S2
fg(h)—zj hcoshcos +Z coshcos - 24y

2 2

JAQ) =§<z i, 43k [sin 2

20 ; T 20 ;
_ : J1 n : J1 _
jo = [sin (52 )]+ [sin (52)

u
20 ; T . 20; b

+ |cos( I3 ——)| — sm( ’3)cos—,

h h h h

. 29]'
i = [sin (52)
This completes the proof. i

where

v




A New Notion of Energy of Digraphs 121

Next, we study the increasing property of digraphs in the set D,, ;. For this we show
that the digraphs does not satisfy the increasing property with respect to quasi-order
relation.

-———
: r
p i
L. - <

Figure 3: D;, D, € Dsgs.

Example 4.5. Consider the digraphs Dy, D, € Digs in Figure 3. Note that h = 1(mod 2).
Applying Theorem 4.3, we obtain the characteristic polynomials of D; and D, which are
given by ®p (x) = x'® —4x'3 + 4x® — x3 and &, (x) = x'® — 4x'3 + 3x® — x3. For
k = 1,2,3, itis obvious to see that c(D,, kh) < c(D,, kh) but their p-energies are given by
E,(D;) = 4.8474 and E,(D,) = 5.0062, that is, E,(D;) < E,(D,). Hence it is not
necessary that the p-energy of digraphs will increase with respect to quasi-order relation
defined over D,, ,, when h = 1 (mod 2).

Figure 4: D3,D, € Dy, 6.

Example 4.6. Let D3, D, € D,, ¢ be digraphs in Figure 4. Then we see that h = 2(mod 4).
Applying Theorem 4.3, we obtain @, = x?* —4x'® 4+ 4x'° —x* and @, = x?* -
4x16 + 3x10 — x*. It is easy to see that c(Ds, kh) = c(D,, kh) for k € {1,2,3} and their
p-energies are E,(D;) = 5.3759 and E,(D,) = 5.7087, that is, E,(D3) < E,(D,). This
shows that p-energy does not possess increasing-property when h = 2(mod 4).
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Figure 5: D5, Dg € D3 g.

Example 4.7. Let Ds, Dg € D3gg be digraphs in Figure 5. Observe that h = 0(mod4).
Then Theorem 4.3 imply that ®p_ = x3° — 4x?? + 3x™* — x° and @, = x30 — 4x** +
4x1* — x®, For k € {1,2,3} it is obvious to see that c¢(Dg, kh) = c(Ds, kh). Moreover,
E,(Ds) = 6.6900 and E,,(Dg) = 6.1163. This gives E,(Dg) < E,(Ds).

5. UPPER BOUND AND p—EQUIENERGETIC DIGRAPHS

Let D be a digraph of order n and {z,, ..., z,} be its spectrum. Then it is known in [3,
Theorem 1.9] that Y.}, z; = c,, where ¢ is the number of closed walks in D of length s.
The following result is important and will be used in proving a few results in this section.

Lemma 5.1 (Rada [13]). Let {z, ..., z,} be the spectrum of an n-vertex digraph D and a
be the number of its arcs. Then
(1) k=1(R(2)? = Xk=1(B(2)? = ¢,
(2)  XR=1(R(@)? +2k=1(83(z)* < a.
From Lemma 5.1, we get
SR (R(z)? < =2 (5.21)

Let D be any digraph. Then nD is a digraph with n copies of D. Next, we find
upper bound for the p-energy of an arbitrary digraph. We remark that the idea of the proof
is taken from Theorem 2.3 [14].

Theorem 5.2. Let D be a digraph of order n and a be the number of its arcs. Then
E,(D) < %,/a2 — 2. Moreover, equality holds if D = SCZ, g copies of C,.

Proof. Let {z;, ..., z,} be the spectrum of a digraph D. Then by applying Cauchy-
Schwarz inequality to the wvectors X = (|R(z)|, |R(z)|, ..., |R(z)|) and Y =
(1321, 13(22)1, -, |3(2n)1), we obtain:
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E,(D) = Xk=11R(z) - 3(zi| = Lk=1IR@Z)I13 (2|
S VX (R(21)? V2R (B(2)? .

Using Lemma 5.1, we get

2_p2
a?-c5

2
AOENEN yanciea e CER RS L

For the second part, clearly the digraph D = SCZ have n vertices and c, = n arcs.
Thus, it holds that E,(D) = 0. On the other hand, it is obvious to see that Spec(D) =

{1@ —1@)}. This gives Ep(D) = 2(0) = 0. This completes the proof. m

Two digraphs of same order are cospectral if they have same spectrum, otherwise
non-cospectral. Trivial examples of cospectral digraphs are the isomorphic digraphs. For
more study on cospectral digraphs we refer [10]. Two digraphs with same number of
vertices are said to be p-equienergetic if they have same p-energy. It is clear that
cospectral digraphs are always p-equienergetic. In this section, we are interested in
constructing a few classes of p-equienergetic non-cospectral digraphs. The following is an
easy lemma whose proof is similar to the proof of Lemma 5.2 [9].

Lemma 5.3. Forn > 6, we have E,(C,) = 2E,(Cr) ifand only if n = 2 (mod 4).
2

The following theorems give a class of non-cospectral p-equienergetic digraphs.
Since the proof is similar to the proof of Theorem 5.3 [9], thus we omit it.

Theorem 5.4. For n > 6, let D be a digraph of order n which contains m vertex-disjoint
directed cycles of lengths sy,ss,...,S,, Where s, =2 (mod4), k=1,2,..,m. Take
another digraph H with n vertices and contains 2m vertex-disjoint directed cycles of

lengths 531,5—1 5—25—2%""%" Then the two digraphs H and D are non-cospectral p-

2 7272
equienergetic digraphs.

Lemma 5.5. Let D be a digraph of order n and x; + iy, be its eigenvalues satisfying
lxkl, [yl < Lk=12,..,n. Then E,(DX C3) =2¥},|ykl and E,(D X C,) =

2 Xx=1(1xk | + |yicl)-

Proof. It is easy to see that Spec(C,) = {—1,1} and Spec(C,) = {—1,1,—i,i}. Next, let D
be a digraph of order n and x; + iy, be its eigenvalues satisfying |x;l, |vx| < 1,k =
1,2,..,n. Then Spec(D X C)& ={(xx + 1) +ivy, (xpy — 1)+ iy | k=1,..,n} and
Spec(DX CH& ={(xx + )+ iy, g = D)+ iy, xe + iy + 1), e + iy — 1) 1 k =
1, ...,n}. Consequently, the p-energies of D X C, and D x C, are given by:

E,(D X C) = 2 ¥k=aly (e — DI + |y (xpe + D, (5.22)
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E,(D X Cy) = 2251y — DI + [y (e + DI+ |x ke — DI+ [xx (v + D).
(5.23)

Since e, 1yel < 1, the  equations (5.22) and (5.23) become
Ep(D X C;) =2X%j=1lykl and  Ep(D X C4) =2 %=1 (x| + |yk]). The proof is
complete. o

Corollary 5.6. For n > 4, we have
2cot% if n=1(mod 2),
4cot§ if n=0(mod 2).
T . _
(2 cot— if n=1(mod 2),
Ep(Cp X Cy) = 4cot% if n = 2(mod 4),
8cot% if n=0(mod 4).

E,(C, X Cy) = {

Proof. From (3.4), the eigenvalues of C, are cosZkT”+isin2kT”, k=01,..,n—1.

Clearly, |cos¥ | < 1and |sin ZRT" | < 1. By Lemma 5.5, it holds that

. 2k
Ep(Cn X CZ) = 222:1 |San|’

E,(Chx Cy) =2¥%4 (lcosZanl + |sin2an )

Using (2.2) and (2.3), we get the required result. m

Using Corollary 5.6, we give few pairs of non-cospectral p-equienergetic digraphs
in the following example.

Example 5.7. For any integer n, where n > 4, we have the following:
(1) If n= 1(mod 2) then E,(2(C, X C4)) = Ep(Can X C).
(2) If n= 0(mod4) then E,(2(C, x C;)) = E,(Cy X C,).
(3) If n= 2(mod4) then E,(2(Con X C)) = Ep(Cp X Cy).
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