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Let ܩ be a connected graph with vertex set ܸ(ܩ) and edge set (ܩ)ܧ. 
For a subset ܵ  of ܸ(ܩ),  the Steiner distance ݀(ܵ)  of ܵ  is the 
minimum size of a connected subgraph whose vertex set contains ܵ. 
For an integer ݇  with 2 ≤ ݇ ≤  ݊ −  1 , the ݇ -th Steiner Wiener 
index of a graph ܩ is defined as  

 ܵ ܹ(ܩ)  = ∑ ݀(ܵ)ௌ⊆(ீ)
|ௌ|ୀ

 

 In this paper, we present exact values of the ݇-th Steiner Wiener 
index of complete ݉-ary trees by using inclusion-exclusion principle 
for various values of ݇. 
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1. INTRODUCTION 

Molecular descriptors called topological indices are graph invariants that play a significant 
role in chemistry, materials science, pharmaceutical sciences and engineering, since they 
can be correlated with a large number of physio-chemical properties of molecules. 
Topological indices are used in the process of correlating the chemical structures with 
various characteristics such as boiling points and molar heats of formation. Graph theory 
is used to characterize these chemical structures. Binary and ݉-ary trees have extensive 
applications in chemistry and computer science, since these trees can represent chemical 
structures and various useful networks. We consider connected graphs without loops and 
multiple edges. Let ܸ(ܩ) be the vertex set and let (ܩ)ܧ be the edge set of a graph ܩ. The 
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distance ݀(ݒ,ݑ) between two vertices ݒ,ݑ ∈  is the number of edges in a shortest (ܩ)ܸ
path connecting them. 

The Wiener index ܹof a connected graph ܩ , introduced by wiener in 1947, is 
defined as  

(ܩ)ܹ = 1/2 ,ݑ)݀   (ݒ
 ௨,௩∈(ீ) , 

where ݀(ݑ, ܩ is the distance between vertices u and v of (ݒ . The Wiener index is an 
important distance-based graph invariant. It was proposed by Harold Wiener [12] in 1947. 
He found that there exist correlations between the boiling points of paraffins and their 
molecular structure. The study of the Wiener index in mathematics dates back to the 1970s 
[2]. The Wiener index obtained wide attention and numerous results have been worked 
out, see the surveys [3, 4, 5, 13], the recent papers [1, 6, 7, 8] and the references cited 
therein. 

The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural 
generalization of the concept of classical graph distance. For a connected graph ܩ of order 
at least 2 and ܵ ⊆  the Steiner distance ݀(ܵ) of the vertices of ܵ is the minimum size ,(ܩ)ܸ
of a connected subgraph whose vertex set is ܵ. The ݇-th Steiner Wiener index of a graph ܩ 
is defined by 

SW୩(G) = ∑ ݀(ܵ)ௌ⊆(ீ)
|ௌ|ୀ

. 

In this definition, we have ܵ ଵܹ(ܩ) = 0 and ܵ ܹ(ܩ) = ݊ − 1. So we consider 2 ≤ ݇ ≤
݊ − 1. We denote the number of ܵ ⊆ |ܵ| such that (ܩ)ܸ = ݇ and ݀(ܵ) = ,ܩ)by ݊ ݐ  .(ݐ
Based on this notation, we can define the ݇-th Steiner Wiener index of a graph G of order 
݊ alternatively by 

SW୩(G) = ∑ ,ܩ)݊ݐ  ିଵ(ݐ
௧ୀିଵ . 

For some recent investigations on Steiner Wiener index see [9, 10]. 
A tree ܶ is a connected graph containing no cycles. A leaf is a vertex of ܶ  of 

degree 1 and all the other vertices will be called internal vertices. In a rooted tree, the level 
of a vertex ݒ is its distance from the root vertex. The height of a rooted tree is the length of 
a longest path from the root. For ݉ ≥ 2, an ݉-ary tree is a rooted tree in which every 
vertex has at most ݉ children A complete m-ary tree is an ݉-ary tree in which every 
internal vertex has exactly ݉ children and all leaves have the same level. The complete m-
ary tree of height ℎ will be denoted by ܶ,   and its root vertex by ݒ. ܶ,ଶ is a complete 
binary tree of height ℎ. Wiener index of complete ݉-ary tree is found in [11]. Let ܰ(ݒ) 
be the set of vertices at distance ݅ from ݒ in ܩ. 

Let ܣ  = ܸ( ܶ,)− ܰ(ݒ),ݔ = |ܣ| = ି
ିଵ

 and ݊ = หܸ൫ ܶ,൯ห = శభିଵ
ିଵ

= ݔ +

݉ + 1.  For a vertex ݒ ∈ [ݒ]and ܰ ݒ to be the set of children of (ݒ)we denote ܰ ,ܣ =
ܰ(ݒ) ∪  .{ݒ}
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2. PRELIMINARY RESULTS 
 

 For positive integers ܽ  and  ܾ with 1 ≤ ܾ ≤ ܽ − 1,  we have ൫൯ = ൫ିଵ ൯ + ൫ିଵିଵ൯ . The 
Pascal's and Vandermonde's identity are stated as,  

Lemma 2.1. For positive integers ܽ, ܾ and  ݐ,  we have 

∑ ቀቁ ቀ

௧ିቁ = ൫ା௧ ൯

௧
ୀ . 

Lemma 2.2. For positive integers ܽ, ܾ, ܿ and  ݐ with ݐ ≤ ܿ, we have 

∑ ቀቁ ቀ

௧ିቁ = ൫ା௧ ൯ −


ୀ ൫௧൯. 

From the Vandermonde's identity we get the following lemmas which help us to get 
our main results. 

Lemma 2.3. If ܽ, ܾ and t are positive integers with 1 ≤ ܾ ≤ ܽ − 1, then 
∑  ቀቁ ቀ


௧ିቁ = ܽ൫ାିଵ௧ିଵ ൯௧

ୀ . 

Lemma 2.4. If ܽ, ܾ and t are positive integers with 1 ≤ ܾ ≤ ܽ − 1, then 
∑ ଶ ቀቁ ቀ


௧ିቁ = ܽ൫ାିଶ௧ିଵ ൯ + ܽଶ൫ାିଶ௧ିଶ ൯௧

ୀ . 
 
3. MAIN RESULTS  

In this section, we will present our main results. 
 
 Theorem 3.1. For ℎ ≥ 2 and 1 ≤ ݇ ≤ ݉ or ℎ = 1 and 1 ≤ ݇ < ݉, we have 

 ܵ ܹି( ܶ,) = (݊ − 1)൫൯ −݉൫ିଵିଵ൯. 

Proof. Let ܵ ⊆ ܸ൫ ܶ,൯ such that |ܵ| = ݊ − ݇. We have two cases to be considered. 

Case 1: ݒ ∈ ܵ̅.  Let |ܵ̅ ∩ ܰ(ݒ)| = .ݎ Then we have  0 ≤ ݎ ≤ ݇ − 1, |ܵ̅ ∩ |ܣ =

݇ − ݎ − 1 and ݀(ܵ) = ݊ − ݎ − 1. There are ቀ


 ቁ ൫
௫

ିିଵ൯ such vertices. This case 

contributes to ܵ ܹି( ܶ,) by 
 ∑ ቀ



 ቁ ൫
௫

ିିଵ൯(݊ − ݎ − 1)ିଵ
ୀ = (݊ − 1)∑ ቀ



 ቁ ൫
௫

ିିଵ൯ − ∑ ݎ ቀ


 ቁ ൫
௫

ିିଵ൯
ିଵ
ୀ

ିଵ
ୀ   (1) 

By Lemma 2.1, we have  

   ∑ ቀ


 ቁ ൫
௫

ିିଵ൯
ିଵ
ୀ = ቀ

ା௫
ିଵ ቁ                                        (2) 
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By Lemma 2.3, we have  

   ∑ ݎ ቀ


 ቁ ൫
௫

ିିଵ൯
ିଵ
ୀ = ݉ ቀ

ା௫ିଵ
ିଶ ቁ                            (3) 

From Equations (1), (2) and (3), we have  
∑ ቀ



 ቁ ൫
௫

ିିଵ൯(݊ − ݎ − 1)ିଵ
ୀ = (݊ − 1)∑ ቀ



 ቁ ൫
௫

ିିଵ൯ − ∑ ݎ ቀ


 ቁ ൫
௫

ିିଵ൯
ିଵ
ୀ

ିଵ
ୀ      

                                               = (݊ − 1)ቀ
ା௫
ିଵ ቁ −݉ ቀ

ା௫ିଵ
ିଶ ቁ 

                                               = (݊ − 1)൫ିଵିଵ൯ −݉൫ିଶିଶ൯. 
Case 2: ݒ ∉ ܵ̅.  Let |ܵ̅ ∩ ܰ(ݒ)| = ݎ . Then 0 ≤ ݎ ≤ ݇, |ܵ̅ ∩ |ܣ = ݇ − ݎ  and 

݀(ܵ) = ݊ − ݎ − 1. There are ቀ


 ቁ ൫
௫

ି൯  such vertices. This case contributes to 

ܵ ܹି( ܶ,) by ∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1)
ୀ . Then by Lemmas 2.1 and 2.3, we 

have  

 ∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1)
ୀ  = (݊ − 1)∑ ቀ



 ቁ ൫
௫

ି൯ − ∑ ݎ ቀ


 ቁ ൫
௫

ି൯

ୀ


ୀ  

                                                   = (݊ − 1) ቀ
ା௫
 ቁ − ݉ ቀ

ା௫ିଵ
ିଵ ቁ 

                                                = (݊ − 1)൫ିଵ ൯ −݉൫ିଶିଵ൯. 
From Case 1 and Case 2, we have  

    ܵ ܹି൫ ܶ,൯ = ∑ ቀ


 ቁ ൫
௫

ିିଵ൯(݊ − ݎ − 1) + ∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1)
ୀ

ିଵ
ୀ   

                             = (݊ − 1)൫ିଵିଵ൯ −݉൫ିଶିଶ൯ + (݊ − 1)൫ିଵ ൯ − ݉൫ିଶିଵ൯ 
                           = (݊ − 1)ൣ൫ିଵିଵ൯ + ൫ିଵ ൯൧ − ݉ൣ൫ିଶିଶ൯ + ൫ିଶିଵ൯൧ 
                          = (݊ − 1)൫൯ − ݉൫ିଵିଵ൯.                                                   
This completes the proof.                                                                                                      □ 
 
Theorem 3.2. Let 1 ≤ ܽ ≤ ݉ be a fixed integer and ݇ = ܽ݉ + ܾ for some ܾ, 1 ≤ ܾ ≤ ݉. 
Then for ℎ ≥ 2 or ܾܽ > 1, we have  

 ܵ ܹି( ܶ,) = (݊ − 1)൫൯ −݉൫ିଵିଵ൯ −݉ିଵ൫ିିଵ
ିିଵ൯. 

Proof. For 0 ≤ ݎ ≤ ݇, let ܷ, = ൛ܶ ⊆ ܸ൫ ܶ,൯ห |ܶ| = ݇ and |ܶ ∩ ܰ(ݒ)| =  Then .{ݎ

 ห ܷ,ห = ቀ


 ቁ ൫
௫

ି൯                                                        (4) 

Let ܵ ⊆ ܸ( ܶ,)  such that |ܵ| = ݊ − ݇.  Then ܵ̅ ∈ ܷ ,  for some .ݎ  Let ܰିଵ(ݒ) =
,ଵݑ} ,ଶݑ … షభ }. For 0ݑ, ≤ ݅ ≤ ݉ିଵ,  let ܤ = ൛ܶ ∈ ܷ,หܰ[ݑ] ⊆ ܶ.  Then |ܤ| = 

൫ ௫ିଵ
ିିଵ൯ ቀ

ି
ି ቁ  and |⋂ ೕܤ

௧
ୀଵ | = ቀ

షభ

௧ ቁ ൫ ௫ି௧
ିି௧൯ ቀ

ି௧
ି௧ ቁ  for all ݐ, 1 ≤ ݐ ≤ ݉ିଵ.  By 

inclusion-exclusion principle, we have 

|⋃ ೕ|ଵஸஸ௧ܤ = ∑ ቚܤೕቚ − ∑ หܤೞ ∩ ห  ଵஸ௦ழ௭ஸ௧ଵஸஸ௧ܤ          
                         +∑ หܤ ∩ ೞܤ ∩ . +หܤ . . +(−1)௧ାଵ|⋂ ೕ|ଵஸஸ௧ଵஸௗழ௦ழ௭ஸ௧ܤ  
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                    = ቀ
షభ

ଵ ቁ ൫ ௫ିଵ
ିିଵ൯ ቀ

ି
ି ቁ − ቀ

షభ

ଶ ቁ ൫ ௫ିଶ
ିିଶ൯ ቀ

ିଶ
ିଶ ቁ                     

                    + ቀ
షభ

ଷ ቁ ൫ ௫ିଷ
ିିଷ൯ ቀ

ିଷ
ିଷ ቁ − ⋯+  (−1)ାଵ ቀ

షభ

௧ ቁ ൫ ௫ି௧
ିି௧൯ ቀ

ି௧
ି௧ ቁ                     

                    = ∑ (−1)ାଵ ቀ
షభ

 ቁ ቀ ௫ି
ିିቁ ቀ

ି
ି ቁ௧

ୀଵ . 

Thus for any ݐ, 1 ≤ ݐ ≤ ݉ିଵ, we have 

|⋃ ೕ|ଵஸஸ௧ܤ = ∑ (−1)ାଵ ቀ
షభ

 ቁ ቀ ௫ି
ିିቁ ቀ

ି
ି ቁ௧

ୀଵ                                (5) 

We have two cases to be considered. 

Case 1: ݒ ∉ ܵ̅. Then |ܵ̅ ∩ |ܣ = ݇ − If 0 .ݎ ≤ ݎ ≤ ݉ − 1 or ݎ = ݇, then ݀(ܵ) =

݊ − ݎ − 1  and ݊ି൫ ܶ, ,݊ − ݎ − 1൯ = ቀ


 ቁ ൫
௫

ି൯ . Suppose ݉ ≤ ݎ ≤ ݇ − 1 

(that is, ݉ ≤ ݎ ≤ ܽ݉ + ܾ − 1) . If ܰ[ݑ] ⋢ ܵ̅  for all ݅, 1 ≤ ݅ ≤ ݉ିଵ,  then 
݀(ܵ) = ݊ − ݎ − 1 and ݊ି൫ ܶ, ,݊ − ݎ − 1൯ = ห ܷ,ห − |⋃ ೕ|ଵஸஸܤ . Then using 
Equations (4) and (5), we have  

݊ି൫ ܶ, ,݊ − ݎ − 1൯ = ቀ


 ቁ ൫
௫

ି൯ − ∑ (−1)ାଵ ቀ
షభ

 ቁ ቀ ௫ି
ିିቁ ቀ

ି
ି ቁ

ୀଵ . 

For 1 ≤ ݐ ≤ ܽ, if there exists {݅ଵ, ݅ଶ, . . . , ݅௧} ⊆ {1, 2, … ,݉ିଵ} such that ⋂ ೕܤ ⊆
௧
ୀଵ

ܵ̅  but ܤ௭ ⋢ ܵ̅  for all ݖ ∈ {1, 2, . . . ,݉ିଵ} − {݅ଵ, ݅ଶ, . . . , ݅௧} , then ݀(ܵ) = ݊ − ݎ − 1 
and  

 ݊ି൫ ܶ, , ݊ − ݎ − 1൯ = ቚ⋂ ೕห−൫ܤ
௧ାଵ
௧ ൯ห⋂ |ೕܤ

௧ାଵ
ୀଵ

௧
ୀଵ + ൫௧ାଶ௧ ൯ቚ ⋂ |ೕܤ

௧ାଶ
ୀଵ  

                                                   −⋯+ (−1)ି௧൫௧൯|⋂ |ೕܤ

ୀଵ  

                                                   = ቀ
షభ

௧ ቁ ൫ ௫ି௧
ିି௧൯ ቀ

ି௧
ି௧ ቁ 

                                                   −൫௧ାଵ௧ ൯ ቀ
షభ

௧ାଵ ቁ ቀ
௫ି(௧ାଵ)

ିି(௧ାଵ)ቁ ቀ
ି(௧ାଵ)
ି(௧ାଵ) ቁ 

                                       +൫௧ାଶ௧ ൯ ቀ
షభ

௧ାଶ ቁ ቀ
௫ି(௧ାଶ)

ିି(௧ାଶ)ቁ ቀ
ି(௧ାଶ)
ି(௧ାଶ) ቁ 

                                       −⋯+ (−1)ି௧    ൫௧൯ ቀ
షభ

 ቁ ൫ ௫ି
ିି൯ ቀ

ି
ି ቁ 

                                       = ∑ (−1)൫௧ା௧ ൯ ቀ
షభ

௧ା ቁ ቀ
௫ି(௧ା)

ିି(௧ା)ቁ ቀ
ି(௧ା)
ି(௧ା) ቁି௧

ୀ . 

This implies that, the first case contributes to ܵ ܹି( ܶ,) by 

∑ ݀(ܵ)ௌ⊆൫், ൯ 
௩బ∈ௌ,|ௌ|ୀି

= ∑ ∑ )ି݊ݍ ܶ, , ିିଵ(ݍ
ୀିିିଵ


ୀ   

= ∑ (݊ − ݎ − 1)݊ି൫ ܶ, ,݊ − ݎ − 1൯ +ିଵ
ୀ (݊ − ݇ − 1)݊ି൫ ܶ, , ݊ − ݇ − 1൯  

            +∑ ∑ ି൫݊ݍ ܶ, , ൯ିିଵݍ
ୀିିିଵ

ିଵ
ୀ 

௨∈ேషభ(௩బ)
ே[௨]⊆ௌ̅
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            +∑ ∑ )ି݊ݍ ܶ, ିିଵ(ݍ,
ୀିିିଵ

ିଵ
ୀ 

௨∈ேషభ(௩బ)
ே[௨]⊈ௌ̅

  

= ∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1) + ቀ


 ቁ (݊ − ݇ − 1)ିଵ
ୀ   

 +∑ ∑ ∑ (−1)൫௧ା௧ ൯ ቀ
షభ

௧ା ቁ ቀ
௫ି(௧ା)

ିି(௧ା)ቁ ቀ
ି(௧ା)
ି(௧ା) ቁି௧

ୀ

௧ୀଵ

ିଵ
ୀ (݊ − ݎ − ݐ − 1)  

 +∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1)ିଵ
ୀ  

+∑ ∑ (−1)௭ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ

௭ୀଵ
ିଵ
ୀ (݊ − ݎ − 1) 

= ∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1)
ୀ   

 +∑ ∑ (−1)௭ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ

௭ୀଵ
ିଵ
ୀ (݊ − ݎ − 1) 

 +∑ ∑ ∑ (−1)൫௧ା௧ ൯ ቀ
షభ

௧ା ቁ ቀ
௫ି(௧ା)

ିି(௧ା)ቁ ቀ
ି(௧ା)
ି(௧ା) ቁି௧

ୀ

௧ୀଵ

ିଵ
ୀ (݊ − ݎ − ݐ − 1)  

To simplify this expression, first let us simplify sum in the third line. 

∑ ∑ (−1)൫௧ା௧ ൯ ቀ
షభ

௧ା ቁ ቀ
௫ି(௧ା)

ିି(௧ା)ቁ ቀ
ି(௧ା)
ି(௧ା) ቁ (݊ − ݎ − ݐ − 1)ି௧

ୀ

௧ୀଵ   

= ൫ଵଵ൯ ቀ
షభ

ଵ ቁ ൫ ௫ିଵ
ିିଵ൯ ቀ

ି
ି ቁ (݊ − ݎ − 2)  

−൫ଶଵ൯ ቀ
షభ

ଶ ቁ ൫ ௫ିଶ
ିିଶ൯ ቀ

ିଶ
ିଶ ቁ (݊ − ݎ − 2)  

+൫ଶଶ൯ ቀ
షభ

ଶ ቁ ൫ ௫ିଶ
ିିଶ൯ ቀ

ିଶ
ିଶ ቁ (݊ − ݎ − 3)  

+൫ଷଵ൯ ቀ
షభ

ଷ ቁ ൫ ௫ିଷ
ିିଷ൯ ቀ

ିଷ
ିଷ ቁ (݊ − ݎ − 2)  

 −൫ଷଶ൯ ቀ
షభ

ଷ ቁ ൫ ௫ିଷ
ିିଷ൯ ቀ

ିଷ
ିଷ ቁ (݊ − ݎ − 3) 

 +൫ଷଷ൯ ቀ
షభ

ଷ ቁ ൫ ௫ିଷ
ିିଷ൯ ቀ

ିଷ
ିଷ ቁ (݊ − ݎ − 4)  

 +⋯+ (−1)ିଵ൫ଵ൯ ቀ
షభ

 ቁ ൫ ௫ି
ିି൯ ቀ

ି
ି ቁ (݊ − ݎ − 2) 

 +⋯+ ൫൯ ቀ
షభ

 ቁ ൫ ௫ି
ିି൯ ቀ

ି
ି ቁ (݊ − ݎ − ܽ − 1). 

For 2 ≤ ݖ ≤ ܽ, the ݖ௧ row of this equation is 

∑ (−1)௭ି൫௭൯ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ (݊ − ݎ − ݅ − 1)௭

ୀଵ   

= (−1)௭ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ∑ (−1)൫௭൯(݊ − ݎ − ݅ − 1)௭

ୀଵ   

= (−1)௭ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ [(݊ − ݎ − 1)∑ (−1)൫௭൯

௭
ୀଵ −∑ (−1)݅൫௭൯]௭

ୀଵ    

= (−1)௭ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ (݊ − ݎ − 1)(−1)  

= (−1)௭ାଵ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ (݊ − ݎ − 1). 
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Therefore,  
∑ ݀(ܵ)ௌ⊆൫், ൯ 
௩బ∈ௌ,|ௌ|ୀି

  

= ∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1)
ୀ + ∑ ݉ିଵ൫ ௫ିଵ

ିିଵ൯ ቀ
ି
ି ቁ (݊ − ݎ − 2)ିଵ

ୀ   

+∑ ∑ (−1)௭ାଵ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ (݊ − ݎ − 1)

௭ୀଶ
ିଵ
ୀ   

+∑ ∑ (−1)௭ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ (݊ − ݎ − 1)

௭ୀଵ
ିଵ
ୀ   

 = ∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1)
ୀ  

+∑ ݉ିଵ൫ ௫ିଵ
ିିଵ൯ ቀ

ି
ି ቁ (݊ − ݎ − 2 − (݊ − ݎ − 1))ିଵ

ୀ   

+∑ ∑ (−1)௭ ቀ
షభ

௭ ቁ ൫ ௫ି௭
ିି௭൯ ቀ

ି௭
ି௭ ቁ (݊ − ݎ − 1 − (݊ − ݎ − 1))

௭ୀଶ
ିଵ
ୀ   

= ∑ ቀ


 ቁ ൫
௫

ି൯(݊ − ݎ − 1)
ୀ − ∑ ݉ିଵ൫ ௫ିଵ

ିିଵ൯ ቀ
ି
ି ቁିଵ

ୀ   

 = (݊ − 1)∑ ቀ


 ቁ ൫
௫

ି൯

ୀ − ∑ ݎ ቀ



 ቁ ൫
௫

ି൯

ୀ  

−݉ିଵ ∑ ቀ ௫ିଵ
ିିଵିቁ ቀ

ି
 ቁିିଵ

ୀ   

= (݊ − 1) ቀ௫ା


 ቁ − ݉ ቀ௫ା
ିଵ

ିଵ ቁ −݉ିଵ ቀ௫ା
ିିଵ

ିିଵ ቁ  

= (݊ − 1)൫ିଵ ൯ − ݉൫ିଶିଵ൯ −݉ିଵ൫ିିଶ
ିିଵ൯. 

This implies that, 
∑ ݀(ܵ)ௌ⊆൫், ൯ 
௩బ∈ௌ,|ௌ|ୀି

= (݊ − 1)൫ିଵ ൯ − ݉൫ିଶିଵ൯ − ݉ିଵ൫ିିଶ
ିିଵ൯            (6) 

Case 2: ݒ ∈ ܵ̅. Then |ܵ̅ ∩ |ܣ = ݇ − ݎ − 1. Similar to the first case, the second 
case also contributes to ܵ ܹି( ܶ,) by 

∑ ݀(ܵ)ௌ⊆൫், ൯ 
௩బ∉ௌ,|ௌ|ୀି

= (݊ − 1)൫ିଵିଵ൯ −݉൫ିଶିଶ൯ −݉ିଵ൫ିିଶ
ିିଶ൯           (7) 

From Equations (6) and (7), we have  

 ܵ ܹି൫ ܶ,൯ = ∑ ݀(ܵ) + ∑ ݀(ܵ)ௌ⊆൫், ൯ 
௩బ∉ௌ,|ௌ|ୀି

ௌ⊆൫், ൯ 
௩బ∈ௌ,|ௌ|ୀି

  

                        = (݊ − 1)൫ିଵ ൯ − ݉൫ିଶିଵ൯ −݉ିଵ൫ିିଶ
ିିଵ൯ 

                        +(݊ − 1)൫ିଵିଵ൯ −݉൫ିଶିଶ൯ −݉ିଵ൫ିିଶ
ିିଶ൯ 

                         = (݊ − 1)ൣ൫ିଵ ൯ + ൫ିଵିଵ൯൧ − ݉ൣ൫ିଶିଵ൯ + ൫ିଶିଶ൯൧ 
                         −݉ିଵൣ൫ିିଶ

ିିଵ൯ + ൫ିିଶ
ିିଶ൯൧  

                         = (݊ − 1)൫൯ −݉൫ିଵିଵ൯ −݉ିଵ൫ିିଵ
ିିଵ൯.  
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This completes the proof.                                                                                                      □ 

 

4. CONCLUDING REMARKS 

In this paper, we presented exact values of the ݇-th Steiner Wiener index of complete ݉-
ary trees by using inclusion-exclusion principle for various values of ݇.  
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