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Zhabotinskii's reaction. In particular, it is shown that for any
coupling constant n € [0,1/2), any r € {1,2, ...} and 6 = Q", the
topological entropy of this system is greater than or equal to
rlog(2 — 2n), and that this system is Li-Yorke chaotic and
distributionally chaotic, where the map Q is defined by Q(a) =1 —
|1—2al, a€[0,1], and Q@) = —Q(-a), a€[-1,0].
Moreover, we also show that for any c,d with0 <c<d<1,n=0
and 6 = Q, this system is distributionally (c, d)-chaotic.

© 2021 University of Kashan Press. All rights reserved

*Corresponding Author (Email address: gdoulrs@163.com)
DOI: 10.22052/ijmc.2021.240450.1541



WANG AND LI

1. INTRODUCTION

A topological dynamical system (t.d.s. for short) (W, 8) is always assumed to be a compact
metric space W together with a continuous map 6:W — W. Since the term of chaos
was first introduced by Li and Yorke in [1], topological dynamical systems were highly
considered in the literature [2-3] because they can model many phenomena from
biology, physics, chemistry and social sciences. We know that Lattice Dynamical Systems
or 1d Spatiotemporal Discrete Systems are generalizations of classical discrete dynamical
systems. These kinds of systems have recently appeared as an important subject for
investigation. In [4] we can find the importance of these type of systems. To understand
when one of these type of systems has complicated dynamical properties or not by the
study of one topological dynamical property is an open problem [5]. By using the concept
of chaos, Guirao and Lampart characterized the dynamical complexity of a class of coupled
lattice systems posed by Kaneko in [6] which is related to the Belusov-Zhabotinskii's
reaction [5] and proved that such systems are Devaney chaotic and Li-Yorke chaotic for
zero coupling constant. Also, they declared that these systems may be more complicated
for non-zero coupling constants. Consequently, to further study the chaotic properties of the
systems with non-zero coupling constants are very difficult. Recently, in [7] Wu and
Zhu established that the systems with non-zero coupling constant n € (0,1) are Li-Yorke
chaotic and have positive entropy.

Distributional chaos defined by Schweizer and Smtal [8], is very interesting and
important. This is because that it is equivalent to positive topological entropy and some
other kinds of chaos if the state spaces are restricted to the closed intervals [8] or
hyperbolic symbolic spaces [9]. However, we know that this equivalence does not transfer
to higher dimensions. For example, positive topological entropy does not imply
distributional chaos for triangular maps [10] (such a case can happen for zero-dimensional
spaces [11]). It is known from [12] that there is a minimal system which is distributional
chaotic. More recently, Wu and Zhu deduced that for 6 = Q|o,jand any pair0 < c < d <

1, the following coupled lattice system with non-zero coupling constant n € (0,1) is
distributionally (c, d)-chaotic [13]:

af*t = (1 -moal) +n0(af) + 6(ali)), (1)
where k is discrete time index, [ is lattice side index with system size M (that is, | €
{1,2, ..,M}), n€(0,1) is coupling constant. Motivated by [14], we will further
explore the chaotic properties of the following chemical models which are related to
Belusov-Zhabotinskii's reaction:

af*t = (1-mo(af) +5n0(af,) - 0(afin)], (2)
where k is discrete time index, [ is lattice side index with system size M, n € [0,1) is
coupling constant and 6 is a continuous map on W = [—1,1]. In particular, we obtain
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that for any coupling constant n € [0,1/2), any r € {1,2, ...} and 8 = Q", the topological
entropy of the above chemical systems are greater than or equal to rlog(2 — 2n), and that
such systems are Li-Yorke chaotic and distributionally chaotic, where the map Q is defined
by Q(a) =1—-1|1—-2al|, a€[0,1],and Q(a) = —Q(—a), a € [-1,0]. At the same
time, it is obtained that for any ¢, d with 0 < c <d <1,n =0 and 6 = Q, this system is
distributionally (c, d)-chaotic.

2. PRELIMINARIES

In this article, we always assume that W denotes a compact metric space with metric p, and
that (W, 8) denotes a t.d.s..

A pair (a,b) € W x W is called a Li-Yorke pair of system (W, 8) if the following
are fulfilled:

(1) lirlnsupp(Hl(a), 6'(b)) > 0.

(2) lilrrliogfp(é)l(a), 6'(b)) = 0.

A subset D c W is said to be a LY-scrambled set for 8 if the set D has at least two
points and any two distinct points in D form a Li-Yorke pair of (W, 8). A system (W, 6) or
amap 6: W — W is said to be Li-Yorke chaotic if it has an uncountable LY-scrambled set.

Let (W,0) be at.d.s.. Forany (a,b) € W and any [ € {1, 2, ...}, the distributional
function @', : [0, +0) — [0, 1] is defined by

L, (s) = T#U € {1,2, . }:p(67 (@), 07 (b)) <5, 1< <1},
where #D is the cardinality of the set D. Set
ap(s,60) = liminfd, (s)
and
®7,(s,0) = lirlnsuptbéb (s).

For any c,d € [0,1] with ¢ < d, a t.d.s. (W, @) is distributionally (c, d)-chaotic if
there exist an uncountable set D ¢ W and k > 0 such that ®,,(s,8) = c and ®,,(s,0) =
d for any (a,b) € D x D with a # b and any s € (0, k). Clearly, (W, 0) is distributionally
chaotic if it is distributionally (0, 1)-chaotic,s ee [13, 15].

Let G be the diameter of the space W. That is, G = sup{p(a,b):a,b € W}. The
principal measure v,,(8) of at.d.s. (W, ) is defined by

Vp(8) = sup = [ (@3y(s,0) — Py (s,0))ds,
a,bew
see [16]. It is known from [16] that

2 w 1 2
(@) =3+ Liz2 I (2L+1)(20-141)

where 8 is the tent map defined by 8(a) = 1 — |1 — 2a] forany a € [0, 1].

2l—1
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The state space of the chemical system (1) or (3) is the set
A ={a:a={a},a; € {—o, +o},j€{.,-101, .39, |l a; I< +oo}.
where t > 1 is the dimension of the range space of the map of state a;, ¢ = 1 is the
dimension of the lattice and the norm on A is defined by

1
lallz= (Zje{...,—1,o,1,...}q |aj|2)5a
where (|a;| is the length of the vector a;) [5].
We will discuss and study the following chemical system related to the model stated
by Kaneko in [6] and given by Garcia Guirao and Lampart in [5] which is closely related to
the Belusov-Zhabotinskii reaction [5-6, 17-20]:

af*t = (1 -mo(al) +nl6(afy) — 6(aliy), (3)
where k is discrete time index, [ is lattice side index with system size M, n € [0,1)
is coupling constant, and @ is a continuous map on W = [—1,1].
Generally speaking, for the system (1) or (3), one of the following three
assumptions is needed:

1) af = afym,
2) a¥ = aftM,
3) af = aithy,
standardly, the first assumption is needed.

3. MAIN RESULTS

The system (1) was investigated by many authors, mostly experimentally or semi-
analytically than analytically. Chen and Liu [21] first obtained analytic
results. Especially, they established that this system is Li-Yorke chaotic. In [5] Guirao
and Lampart gave an new alternative and simpler proof of this result.

Let p be the product metric on the product space W™ defined by

1
p((ay, az, ...,ay), (b1, by, ..., by)) = (2?21 (aj - bj)z)g,
for any (ay, ay, ..., ay), (by, by, ..., by) € WM, where W = [—1,1].
Define a map H: (WM,p) > (WM,p) by H(ay,a,, ...,ay) = (by, by, ..., by),
where b; = (1 —n)0(a;) + g(e(aj_l) — e(aj’-‘ﬂ)). It is clear that the chemical system (3)
is equivalent to the above dynamical system (W™, H), and that the chemical system (3) is
different from the chemical system (1) when n # 0. In [5] Guirao and Lampart claimed that
for non-zero couplings constants, this chemical system (3) is more complicated.

Inspired by [14] we have the following theorem.
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Theorem 3.1. For any r € {1, 2, ... }, the topological entropy of the chemical system (3) is
greater than or equal to rlog(2 — 2n) foranyn € [0,1/2) and 6 = Q™.

Proof. Write

A[O,l]M = {(al, a,, ...,aM): a, =4a, = =0ay € [0, 1]}
As F is a continuous map on W™, (A[O’I]M,HlA[O 1]M) is a subsystem of the dynamical
system (W™, H). Therefore, one has that h;,, (H) = Aoy (H | A[o,l]M)'

For any fixed n € [0,1/2), we let 8'(a) = (1 —n)68(a) for any a € [-1,1]. Then
we obtain that 8'(a) = 2(1 —n)a for any a € [0,1/2) and 6'(a) = 2(1 —n)(1 — a) for
any a € [1/2,1]. Define amap ¢: Ay, = [0,1] by p(a) = aforany a = (a,a, ..,a) €
Apg,qpm- It is easily verified that ¢ is a homeomorphism. Clearly, one gets that

¢oHls, u(@ =0 (Flon@),
and

¢ (0101(@) = 8'l101)(@) = 0'lj11 ° P (@).

So, one obtains that ¢ o H|A[O,1]M = 0'|[o,17° @. This shows that (A[O'l]M,F|A[0’1]M) is
topologically conjugate to the subsystem ([0, 1], 6'[(o.17). Therefore, one has that

heop (Hlay ) = heop(6lio.1):
By Corollary 4.3.13 from [22] we have

haop (Hla, ) = heop(©'lio 1) = 7~ heop((1 = 1)Qljo 1)) = Tlog(2 = 2n).

Consequently, one gets that h.,, (H) = rlog(2 — 27). m

Theorem 3.2. For any r € {1, 2, ... }, the chemical system (3) is chaotic in the sense of Li-
Yorke foranyn € [0,1/2) and 6 = Q".

Proof. By Theorem 3.1, we know that if n € [0,1/2) and 6 = Q", then the topological
entropy of the chemical system (3) is positive. By Proposition 2 in [13], this system (3) is
chaotic in the sense of Li-Yorke forany r € {1,2, ...} and any n € [0,1/2). O

Theorem 3.3. For any r € {1, 2, ...}, the chemical system (3) is distributionally chaotic for
anyn € [0,1/2)and 6 = Q.

Proof. From the proof of Theorem 3.1 one can see that for any n € [0,1/2) and any
re{1,2, ..}, the system (A[(,‘1]M,H|A[0 1]M) is conjugated with the system

([0,1], @"l{o,11)- As Qljo,17 s distributionally chaotic, by Lemmas 2.1 and 2.2 in [23]
Q" |j0,17 Is distributionally chaotic for any r € {1, 2, ... }. By the definition and Theorem 2 in



WANG AND LI

[10] and its proof, the system (A[Ojl]M,H|A[O'1]M) is distributionally chaotic for any n €
[0,1/2) and any r €{1,2, ...}. As (A[O‘l]M,H|A[01]M) is a subsystem of the system

(WM, H), the system (W™, H) is distributionally chaotic for any n € [0,1/2) and any r €
{1,2, .. }. O

Theorem 3.4. For any ¢,d with 0 < ¢ < d < 1, the chemical system (3) is distributionally
(c,d)-chaoticforn =0and 8 = Q.

Proof. By Proposition 3 in [13], Q|jo 1; is distributionally (c, d)-chaotic for any ¢, d with
0 <c<d<1. From the proof of Theorem 3.1 we know that for n = 0, the subsystem
(Lo, H B, 1]M) of the system (W™M,H) is topologically conjugated to system
([0, 1], Qlj0,17)- By Proposition 1.6 in [15], the system (A[o_l]M,HlA[0 1]M) is distributionally

(¢, d)-chaotic for any c¢,d with 0 <c <d < 1. This means that the system (W™, H)
is distributionally (c, d)-chaotic forn = 0andany ¢c,dwith0 <c <d < 1. O

Theorem 3.5. Let 8: W — W be continuous and n € [0, 1] be fixed. Then the principal
measure of the chemical system (3) is greater than or equal to v,((1 —n)6@) for any
6 €[0,1].

Proof. Clearly, for any fixed 6€[0,1] and any a€W, one has
that H(a) = m, where a = (a,qa, ...,a) € WM and 6'(a) = (1 —n)8(a) for any
a € W.Forany a,b € W with a # b and any s € (0,VM), one has that
@} (s, H) = lirl_risogp%#{j €N:j €{0,1, ...,i = 1}, p(H/ (@), H/ (D)) < s} = P}y (5=, 6.
By a similar argument, one has that

D55, H) = (7, 6")
for any a, b € W with a # b. This means that

1 +o * 1;
V) = asl}legv\/_ﬁfo (dbag(s, H) — @ (s, H))ds = vp(6"). i

Remark 3.1. Theorem 3.5 completely solves Problem 3.2 given by Li in [24].

Remark 3.2. Roth [25] solved a problem regarding Li-Yorke and distributional chaos and
gave the following question: Is there a DC3 chaotic subshift which is not Li-Yorke chaotic?
Many definitions of chaos have appeared in the last decades and with them the question if
they are equivalent in some more specific spaces. In [26] Roth's focus was distributional
chaos, first defined in 1994 and later subdivided into three major types (and even more
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subtypes). These versions of chaos are equivalent on a closed interval, but distinct in more
complicated spaces. As dendrites have much in common with the interval, she
explored whether or not she could distinguish these kinds of chaos already
on dendrites. She also briefly looked at the correlation with other types of chaos. The
relations between concepts of distributional, Li-Yorke and w chaos were discussed by
many authors. In [27] Guirao and Lampart summarized all known connections between
these three different types of chaos and fulfilled the results for general compact metric
spaces by the construction of a selfmap over a compact perfect set such that this map is w
chaotic, not distributionally chaotic and has zero topological entropy. Among other
notions, Li-Yorke chaos and topological entropy belong to basic and widely used notions in
the theory of discrete dynamical systems. The question of their mutual relationship is thus
very natural. Since 2002, from [28] we know that for continuous maps on compact metric
spaces positive topological entropy implies Li-Yorke chaos. Analogical implication
between positive topological entropy and distributional chaos of the second type has been
obtained by Downarowicz [29]. It is noted that, in both cases, the converse implications do
not hold, see [30] and [31], respectively. So, a natural question arises, whether there exists
a property connected to positiveness of topological entropy is equivalent to the occurrence
of Li-Yorke chaos. This question was solved in [32] by Franzova and Smital for maps of
the compact interval.

Remark 3.3. For some related well-known relations between 2-points-chaos and infinite-
points-chaos for all applied notions of chaos, we refer the reader to [26, 27]. From the
proofs of our results we can easily see that while increasing the system's dimension all the
results in this paper are true.

Problem 3.1. Let ¢,d with 0 <c<d <1 be given and 6 = Q. Is the system (3)
distributionally (c, d)-chaotic forany 1 > n > 0?

Problem 3.2. Is the principal measure of a system or a map invariant under topological
conjugacy?

ACKNOWLEDGEMENT. This work was supported by the National Natural Science
Foundation of China (no. 11501391), Opening Project of Artificial Intelligence Key
Laboratory of Sichuan Province (2018RZJ03), Opening Project of Bridge Non-destruction
Detecting and Engineering Computing Key Laboratory of Sichuan Province
(2018QZJ03), Ministry of Education Science and Technology Development center
(2020QT13), the Opening Project of Key Laboratory of Higher Education of Sichuan
Province for Enterprise Informationalization and Internet of Things (2020WZJ01) and
Scientific Research Project of Sichuan University of Science and Engineering (2020RC24).



64

WANG AND LI

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

T. Y. LiandJ. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (10)
(1975) 985-992.

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer Monographs
in Mathematics, Springer, Berlin, 1992.

R. L. Devaney, An Introduction to Chaotics Dynamical Systems ,Benjamin/
Cummings, Menlo Park, CA, 1986.

J. R. Chazottes and B. Fernandez (Eds.), Dynamics of Coupled Map Lattices and of
Related Spatially Extended Systems, Lecture Notes in Physics, vol. 671, Springer-
Verlag Berlin Heidelberg, 2005.

J. L. Garca Guirao and M. Lampart, Chaos of a coupled lattice system related with
Belusov-Zhabotinskii reaction, J. Math. Chem. 48 (2010) 159-164.

K. Kaneko, Globally coupled chaos violates law of large
numbers, Phys. Rev. Lett. 65 (1990) 1391-1394.

X. X. Wu and P. Y. Zhu, Li-Yorke chaos in a coupled lattice system related with
Belusov-Zhabotinskii reaction, J. Math. Chem. 50 (2012) 1304—-1308.

B. Schweizer and J. Smtal, Measures of chaos and a spectral decomposition of
dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994) 737-754.

P. Oprocha and P. Wilczynski, Shift spaces and distributional chaos, Chaos Solitons
Fractals 31 (2007) 347-355.

J. Smtal and M. Stefankova, Distributional chaos for triangular maps, Chaos
Solitons Fractals 21 (2004) 1125-1128.

R. Pikula, On some notions of chaos in dimension zero, Collog. Math. 107
(2007) 167-177.

X. X. Wu and P. Y. Zhu, A minimal DC1 system,
Topol. Appl. 159 (2012) 150-152.

X. X. Wu and P. Y. Zhu, The principal measure and distributional (p, q)-chaos of a
coupled lattice system related with Belusov-Zhabotinskii
reaction, J. Math. Chem. 50 (2012) 2439-2445.

J. L. Garca Guiraoand M. Lampart, Positive entropy of a coupled lattice system
related with Belusov-Zhabotinskii reaction, J. Math. Chem. 48 (2010) 66—71.

D. L. Yuan and J. C. Xiong, Densities of trajectory approximation time sets (in
Chinese), Sci. Sin. Math. 40 (11) (2010) 1097-1114.

B. Schweizer, A. Sklar and J. Smtal, Distributional (and other) chaos and its
measurement, Real Anal. Exch. 21 (2001) 495-524.



Topological Entropy, Distributional Chaos and the Principal Measure 65

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

M.  Kohmoto and Y. Oono, Discrete model of chemical
turbulence, Phys. Rev. Lett. 55 (1985) 2927—-2931.

J. L. Hudson, M. Hart and D. Marinko, An experimental study of multiplex peak
periodic and nonperiodic  oscillations in  the  Belusov-Zhabotinskii
reaction, J. Chem. Phys. 71 (1979) 1601-1606.

K. Hirakawa, Y. Oono and H. Yamakazi, Experimental study on
chemical turbulence 11, J. Phys. Soc. Jap. 46 (1979) 721-728.

J. L. Hudson, K. R. Graziani and R. A. Schmitz, Experimental evidence of chaotic
states in the Belusov-Zhabotinskii reaction, J. Chem. Phys. 67 (1977) 3040-3044.
G. Chen and S. T. Liu, On spatial periodic orbits and spatial
chaos, Int. J. Bifur. Chaos 13 (2003) 935-941.

L. Alsedaa, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in
Dimension One, 2nd ed., Advanced Series in Nonlinear Dynamics 5, World
Scientific, Singapore, 1993.

R. Li, A note on the three versions of distributional chaos, Commun. Nonlinear Sci.
Numer. Simulat. 16 (2011) 1993-1997.

R. Li, Comment on “A note on the principal measure and distributional (p, q)-chaos
of a coupled lattice system related with  Belusov-Zhabotinskii
reaction”, J. Math. Chem. 52 (2014) 775-780.

S. Roth, Dynamics on dendrites with closed endpoint sets, Nonlinear Analysis 195
(2020) 111745.

Z. Roth, Distributional chaos and dendrites, Int. J. Bifurcation Chaos 28 (14)
(2018) 1850178.

J. L. G. Guirao and M. Lampart, Relations between distributional, Li-Yorke and w
chaos, Chaos, Solitons Fractals 28 (2006) 788—792.

F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine
Angew. Math. 547 (2002) 51-68.

T. Downarowicz, Positive topological entropy implies chaos
DC2, Proc. Amer. Math. Soc. 142 (2014) 137-149.

J. Smital, Chaotic  functions  with  zero  topological entropy,
Trans. Amer. Math. Soc. 297 (1986) 269—282.

G. L. Forti, L. Paganoni and J. Smital, Dynamics of homeomorphisms on minimal
sets generated by triangular mappings, Bull. Austral. Math. Soc. 59 (1999) 1-20

N. Franzova and J. Smital, Positive sequence topological entropy characterizes
chaotic maps, Proc. Amer. Math. Soc. 112 (1991) 1083-1086.



