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In [13] Gutman introduced a novel graph invariant called Sombor 

index SO, defined as   ( )  ∑ √    (  )
      (  )

 
     ( )

. In 

this paper we provide relations between Sombor index and some 

degree-based topological indices: Zagreb indices, Forgotten index 

and Randić index. Similar relations are established in the class of 

triangle-free graphs. 
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1. INTRODUCTION  

 Let G = (V,E) be a simple undirected graph with vertex set V(G) = {v1, v2, …, vn} and edge 

set E(G), |E(G)| = m. For i =1, 2, …, n the degree of a vertex vi  V(G) is denoted by 

deg(vi) and it is defined as the number of edges incident with vi. If the vertices vi and vj are 

connected, then the connecting edge is labeled by eij. A topological index is a numerical 

quantity of a graph, which is invariant under graph isomorphisms. In mathematical 

chemistry several topological indices have been introduced and extensively studied [14, 17, 

19, 20]. Vertex-degree based topological indices present an important molecular descriptor 

closely related with many chemical properties. Among the oldest and most studied 

topological indices, there are two classical vertex-degree based topological indices-the first 
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Zagreb index and second Zagreb index. The Zagreb indices were introduced by Gutman et 

al. in [11, 12]. The first Zagreb index M1(G) and the second Zagreb index M2(G) of a graph 

G are defined, respectively, as 
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During the past decades, numerous research papers concerning Zagreb indices have 

been published, see [1−8, 10]. In [15,16], Li et al. introduced the generalized version of the 

first Zagreb index, defined as 
p

n

ppp

p vvvGMGZ )deg(...)deg()deg()()( 211   

where p is a real number. This graph invariant is nowadays known under the name general 

first Zagreb index, and has also been much investigated. The case p = 3 was first studied by 

Furtula et al. [9]. They introduced the forgotten index of a graph G, also called as F-index, 

which is defined as 
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In 2020, Gutman introduced a new vertex-degree-based topological index defined 

as   ( )  ∑ √    (  )
      (  )

 
     ( )

 which was named Sombor index, [13]. Some basic 

properties of the Sombor index were established in [13].  

Motivated by this recent research, in this paper we provide basic relationships 

between the Sombor index and Zagreb/Randić indices, Section 2. In Section 3, we estimate 

the Sombor index for the triangle-free graphs. The results in this paper are based on 

elementary inequalities. 

 

2. RELATIONS BETWEEN SOMBOR INDEX AND ZAGREB/RANDIĆ INDICES 

In this section we assume that G is a simple connected graph with n  vertices v1, v2, …, vn  

and m  edges. The corresponding vertex-degrees of G we denote by ).deg(),...,deg( 1 nvv  

 

Theorem 2.1  Let G be a graph on n vertices. Then   ( )  
 

√ 
  ( ). The equality holds 

if and only if G is a regular graph. 

 

Proof.  From the inequality between quadratic and arithmetic means for the positive 
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If G is a k-regular graph, then we have   ( )  
   

√ 
 

 

√ 
  ( )                             

Remark 2.2  It is well known that for a simple connected graph with n vertices and m 

edges occurs    
   

 
  From Theorem 2.1, we conclude that   ( )  
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Theorem 2.3 Let G  be a graph on n  vertices. Then   ( )  
√ 

   
  ( )  The equality 

holds if and only if G is a complete graph on n  vertices. 

 

Proof. Clearly 22)deg()deg(  nvv ji  for each  ....,,1, nji   The inequality between 

quadratic and harmonic means for the numbers )deg( iv  and )deg( jv  yields 
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From (1) we obtain the following lower bound for the Sombor index 
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If G is a complete graph on n vertices, then 
√ 
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 (   ) 

√ 
   (  )  see in [13].  

 

Theorem 2.4 Let G  be a graph on n  vertices and m edges. Then   ( )  √  ( ). The 

equality holds if and only if G  is a regular graph. 

 

Proof.  We apply the inequality between arithmetic and quadratic means to the m  numbers 

22 )deg()deg( ji vv   determined by the edges ).(GEeij   Hence 
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If G  is a k-regular graph, then ).(
2
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Theorem 2.5  Let G  be a graph with n  vertices and m  edges. If )(5 GZ  is a general 

Zagreb index of ,G  then 

4
5

3 )(2)( GZmGSO  . 

The equality holds if and only if G  is a regular graph. 
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Proof. From the power inequality of order 4 and 1 for m numbers √    (  )      (  )  

determined by the edges      ( ) we obtain 
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If G  is a k - regular graph, then ).(
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In the last two results of this section we establish relationships between Sombor and 

Randić index (reduced reciprocal Randić index). The Randić index )(GR  was introduced 

in 1975 by Randić [18] as follows: 

 ( )  ∑
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. 

It is a measure of branching of the carbon-atom skeleton and has been closely correlated 

with many chemical properties. 
 

Theorem 2.6 Let G  be a graph on n  vertices and m edges. Then   ( )  
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equality holds if and only if G  is a regular graph. 
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If G  is a k-regular graph, then .
2

)(
n

GR   Thus, ).(
2)(

2 22

GSO
nk

GR

m
                              

Theorem 2.7  Let G  be a graph with n  vertices and m  edges and let 1)deg( iv  for every 

vertex ).(GVvi   If )(GRRR  is reduced reciprocal Randić index of ,G  then 
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The equality holds if and only if G  is a regular graph. 

 

Proof. Using the inequality between geometric and arithmetic means for the numbers 
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3. A SOMBOR INDEX AND TRIANGLE−FREE GRAPHS 

A triangle-free graph is an undirected graph containing no triangles (3-cycles). Because of 

their specific structure, this family of graphs play an important role in graph theory, 

consequently in chemical graph theory. The topological indices of the triangle-free graphs 

are studied intensively in numerous research papers. We list two known results concerning 

Zagreb indices. 

 

Theorem 3.1 [21] Let G  be a triangle-free ),( mn -graph. Then mnGM )(1  and equality 

holds if and only if G  is a complete bipartite graph. 

 

Theorem 3.2 [21] Let G  be a triangle-free graph with 0m  edges. Then 2

2 )( mGM   
with equality if and only if G  is the union of a complete bipartite graph and isolated 

vertices. 
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Similarly as in the previous section, we assume that G  is a simple connected graph 

with n  vertices v1, v2, …, vn and corresponding vertex-degrees deg(v1), deg(v2), …, deg(vn). 

The next two results give a relation between the Sombor index and the second Zagreb 

index in the class of triangle-free graphs. 

 

Theorem 3.3 Let G  be a triangle-free graph on n  vertices. If )(2 GM  is the second Zagreb 

index of ,G  then  
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The equality holds if and only if G  is a complete graph on 1
2
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Proof.  The proof follows from Remark 2.2 and Theorem 3.2.                                              

 

Theorem 3.4 Let G  be a triangle-free graph on n  vertices and m  edges. Then 
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Now the required result follows directly from Theorem 2.4.                                                  

 

Note that the Sombor index in Theorem 2.4 depends on the size of G and the 

corresponding forgotten index. We apply this result to triangle-free graphs by obtaining an 

upper bound for the size of G  in terms of n  and the maximum degree .  

 

Proposition 3.5 Let G  be a triangle-free graph with n  vertices, m  edges and maximum 

degree .  Then, ).(  nm  

 

Proof. Let v  be a vertex of G  with maximum degree .  Since G  is a triangle-free graph 

there are no edges in the neighborhood of .v  Moreover, every vertex which is not in the 

neighborhood of  v  has degree at most .  Therefore, the maximum number of edges of G  

is ).()1(  nn                                                                                                  

 

Remark 3.6 The above result is useful if   n/2. In this case m  (n − )  n/2, which is 

an improvement of the trivial bound m  n/2.  

 

From Proposition 3.5 and Theorem 2.4 we derive the following result. 
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Corollary 3.7 Let G  be a triangle-free graph with n  vertices and maximum degree .
2

n
  

If )(GF  is the forgotten index of ,G  then .)()()( GFnGSO   
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