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1. INTRODUCTION

Throughout this paper, all graphs we considered are finite, undirected, and simple. Let
G = (V,E) be a connected graph with n = |V| vertices and m = |E| edges. For a vertex
v € V(G), the degree of u, denote by d;(u) (short for d(u)), is the number of vertices
which are adjacent to u. The distance d(u, v), is the length of a shortest path between u
and v. The resistance distance r(u, v), is the effective resistance between u and v. Denote
d(ul|G) = Ypevydu,v) and r(u|G) = Xyevr(u,v). Other notations and
terminologies not defined here will conform to those in [1].

Topological indices are the graph invariants used in theoretical chemistry to encode
molecules for the design of chemical compounds with given physicochemical properties or
given pharmacological and biological activities [2].
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Among all the topological indices, the most well-known is the Wiener index [4],
which is defined as W (G) = Z{uﬂ,}g(a) d;(u,v). As a weighted version of the Wiener
index, Gutman index and Schultz index [5] was proposed as

Gut(G) = Ypuvyev(e)(de(Wds (v))dg (u, v),
S(G) = Xuwievc)(deg () + d;(v))d; (u, v).

Similarly, if the distance is replaced by resistance distance in the expression for the
Gutman index and Schultz index, respectively, then one arrives the multiplicative degree-
Kirchhoff index and additive degree-Kirchhoff index.

The multiplicative degree-Kirchhoff index was proposed by Chen et al. in [6], and
defined as
Kf*(G) = Z{u,v}gv(a)(da (wW)de () (u,v),
where r;(u,v) is the resistance distance between vertex u and v in ¢. Gutman et al.
defined in [7] the additive degree-Kirchhoff index as
Kf*(G) = Zumncve)(dg (W) + dg(W)re(u, v).

The research on the topological indices of some special chemical chains and their
application in chemistry has become a hot issue in chemical graph theory. In [8], Huang et
al. obtained exact formulas for the expected values of the Kirchhoff indices of the random
polyphenyl and spiro chains. Recently, Geng et al. [9] got the Kirchhoff indices and the
number of spanning trees of mdébius phenylenes chain and cylinder phenylenes chain.
Dosli¢ et al. [3] introduced a new bond-additive invariant of a connected graph, named the
Mostar index, as a measure of peripherality in graphs. They gave a cut method for
computing the Mostar index of benzenoid systems and posed an open problem: Find
extremal benzenoid chains, catacondensed benzenoids and general benzenoid graphs with
respect to the Mostar index. Later, Xiao et al. [10, 11] partially solve the problem. They
determined the first three maximal and minimal values of the Mostar index among all
hexagonal chains with h hexagons, and characterize the corresponding extremal graphs by
some transformations on hexagonal chains. Other results see [12-18] and the references
cited therein.

SPCn UnR%1 Hn+l 24

22 3

Figure 1. A spiro chain SPC,, ., with n + 1 hexagons.
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Figure 2. The three types of local arrangements in spiro chains.

A spiro chain SPC,,,; with n + 1 hexagons can be regarded as a spiro chain SPC,
with n hexagons to which a new terminal hexagon H,,,; has been adjoined, see Figure [1].

For n > 3, the terminal hexagon H,,, ; can be attached in three ways, which results in
the local arrangements, we describe as SPC},,, SPC2,, and SPC2,.,, respectively, see
Figure [2].

A random spiro chain SPC,, with n hexagons is a spiro chain obtained by stepwise
addition of terminal hexagons. At each step t(= 3,4,...,n), a random selection is made
from one of the three possible constructions:

i. SPC,_, —» SPC} with probability p;;

ii. SPC,_, —» SPC? with probability p,;

ii. SPC,_, - SPC? with probability 1 — p; — p,, where p,, p, are constants,
irrelative to the step parameter t.

We denote by SPC,(1,0), SPC,(0,1), SPC, (0,0), the spiro meta-chain M,,, the
spiro orth-chain 0,,, the spiro para-chain P,, respectively.

Motivated by [17], we explore the properties of these indices of spiro chain. In this
paper, we determine the expected values of Gutman index E(Gut(SPC,(p1i, p2))),
Schultz  index E(S(SPC,(py, p2)) ., multiplicative  degree-Kirchhoff  index
E(Kf*(SPC,(p1, p2))), additive degree-Kirchhoff index E(Kf*(SPC,,(p1, p2))) in the
random spiro chains and the extremal values of these indices among all spiro chains with n
hexagons. We also give the average values of these indices among all spiro chains with n
hexagons.

2. THE GUTMAN INDEX OF SPC,,

The Gutman index of a random spiro chain SPC,,(p;, p,) (or SPC, for short) is random
variable. In the following, we calculate the expected value of Gut(SPC,). Denote SPC,,,
the graph obtained by attaching SPC,, a new terminal hexagon H,, ., which is spanned by
vertices zy, z,, z3, Zy, Zs, Zg and z; Is u,, see Figure 1.

It is obvious that, for all v € SPC,,,
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d(v,z;) =dw,uy,); d(v,z;) = d(w,u,) +1,dW,z3) = d(w,u,) + 2;
d(v,z,) =dW,u,) +3;d(v, z5) = d(v,u,) + 2; d(v, z5) = d(v,u,) + 1;
2vev(spcy) Aspcn,, (V) =12n+ 2.

We also have that
o1d(z)d(z;,2,) = 18; XP_1 d(z;)d(z;,2, ) = 20; X2_, d(z;)d(z;, 23 ) = 22;
0 1d(z)d(z,2, ) = 24; X9_1 d(2z;)d(z;,z5 ) = 22; X5, d(z;)d(z;, 26 ) = 20.

Denote by E(Gut(SPC,(p., p2))) the expected value of Gutman index of the
random spiro chain SPC,, (p1, p2)-

Theorem 2.1. Forn > 1, we have E(Gut(SPC,(p1, p;))) = (72 — 24p, — 48p,)n3 +
(72p, + 144p,)n? + (36 — 48p, — 96p,)n.

Proof. We proof it in the Appendix A.1. |

If (p1, p2) = (1,0), then SPC,, = M,,; If (p;, p,) = (0,1), then SPC, = 0,; If
(p1, pv2) = (0,0), then SPC,, = P,. From Theorem 2.1, we have

Corollary 2.2. The Gutman index of the para-chain P,, the meta-chain M,, and the ortho-
chain 0,, are
Gut(P,) = 72n3 + 36n,;
Gut(M,) = 48n3 + 72n? — 12n;
Gut(0,) = 24n3 + 144n? — 60n.

Corollary 2.3. Among all spiro chains with n(n > 3) hexagons, the graphs with the
minimum and the maximum Gutman index are the ortho-chain O, and the para-chain P,,
respectively.

Proof. Let SPC, be a spiro chain with n hexagons. By Theorem 2.1, one knows that
fi(p1, v2) = E(Gut(SPC,))=(—24n3 + 72n? — 48n) p, +(—48n3 + 144n? — 96n) p, +

72n3 +36n. Asn > 3, we have that ;’L = 24n3 +72n%2 —48n < 0: YL = _agn3 +

P1 op2
144n? — 96n < 0.
Note that 0<p; <1,0<p, <1,0<p; +p, <1, then fy(py, po) < 72n%+
36n, with equality if and only if p; = p, = 0, it means that SPC,, is para-chain B,.
On the other hand,
filp1,pz ) = (=24n° + 72n? — 48n)(p, + p2) + (—=24n® +72n* — 48n)p, + 72n°
+ 36n
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> (—24n3 + 72n% — 48n) x 1 + (—24n3 + 72n? — 48n)p, + 72n3 + 36n
= (—24n3 + 72n? — 48n)p, + 48n3 + 72n? — 12n
> (=24n3 + 72n* — 48n) x 1 + 48n3 + 72n%> — 12n
> 24n3 + 144n? — 60n,
with equality if and only if p, +p, =1landp, =1, i.e.p; = 0and p, = 1, it means that
SPC, is ortho-chain 0,,. This completes the proof. ]

3. THE SCHULTZ INDEX OF SPC,,

The Schultz index of a random spiro chain SPC,, is random variable. In the following, we
calculate the expected value of S(SPC,). Denote by E(S(SPC,(p1, p2))) the expected
value of Schultz index of the random spiro chain SPC,,(p1, p>).

Theorem 3.1. For n >1, we have E(S(SPC,(p1, p;))) = (60 — 20p, — 40p,)n3 +
(60p, + 120p, + 18)n? + (30 — 40p, — 80p,)n.

Proof. We proof it in the Appendix A.2. |

If (p1, p2) = (1,0), then SPC,, = M,,; If (p;, p,) = (0,1), then SPC, = 0,; If
(p1, p2) = (0,0), then SPC,, = B,. From Theorem 3.1, we have the following corollary:

Corollary 3.2. The Schultz index of the para-chain P,, the meta-chain M,, and the ortho-
chain 0,, are

S(B,) = 60n3 + 18n? + 30n;

S(M,)) = 40n3 + 78n? — 10n;

$(0,)) = 20n3 + 138n? — 40n.
Corollary 3.3. Among all spiro chains with n(n > 3) hexagons, the graphs with the
minimum and the maximum Schultz index are the ortho-chain 0,, and the para-chain P,,
respectively.

Proof. Let SPC,, be a spiro chain with n hexagons. By Theorem 3.1, one knows that
f>(p1, p2) = E(S(SPC,))= (—20n3 + 60n? — 40n) p; + (—40n3 + 120n? — 80n) p, +
60n3 + 18n2 +30n. As n >3, we have that Z% = —20n3 +60n2? —40n < 0; Z% =
1 2
—40n3 + 120n? — 80n < 0.
Note that 0<p,; <1,0<p,<1,0<p, +p, <1, then f,(p,, p;) < 60N+

18n? + 30n, with equality if and only if p, = p, = 0, it means that SPC,, is para-chain B,.
On the other hand, we have
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fo(p1,p2) = (—20n3 + 60n? — 40n)(p, + p,) + (—20n3 + 60n? — 40n)p, + 60n3
+ 18n?% + 30n
> (—20n3 + 60n2 — 40n) x 1 + (—20n3 + 60n? — 40n)p, + 60n3 +
18n2 + 30n
= (—20n3 + 60n2 — 40n)p, + 40n3 + 78n? — 10n
> (—20n3 + 60n? — 40n) x 1 + 40n3 + 78n?% — 10n
> 20n3 + 138n2 — 40n,
with equality if and only if p, +p, =1landp, =1, i.e.p; =0and p, = 1, it means that
SPC, is ortho-chain 0,,. This completes the proof. ]

4. THE MULTIPLICATIVE DEGREE-KIRCHHOFF INDEX OF SPC,,

The multiplicative degree-Kirchhoff index of a random spiro chain SPC, is random
variable. In the following, we calculate the expected value of Kf*(SPC,,).
It is obvious that, for all v € SPC,,,

r(v,z;) =r(v,u,; r(v,z,) =r(v,u,) + Z; r(v,z3) =r(v,u,) + g; r(v,z,) =r(v,u,) +

3 4 5
> r(v,zs) =r(v,u,) + 3 r(v,zg) =r(v,u,) + p Yvev(sPCy) dspcpyq (v) =12n+2.

We also have that
35 40
b= d(z)r(zi2,) = 3 b= d(z)r(zi2,) = 3 P=1d(z)r(zi23) = £
40

P=1d(z)r (21,24 ) = %i P=1d(z)r(zi25) = % P=1d(z)r(zi 26 ) = 3

Denote by E(Kf*(SPC,(p1, p2))) the expected value of multiplicative degree-
Kirchhoff index of the random spiro chain SPC,, (p1, p2).

43

Theorem 4.1. For n > 1, we have E(Kf*(SPC,(p1, p2))) = (36 —4p, — 16p,)n3 +
(32 + 12p, + 48p,)n? + (2 — 8p, — 32p,)n.

Proof. We proof it in the Appendix A.3. ]

If (p1, p2) = (1,0), then SPC,, = M,,; If (p;, p,) = (0,1), then SPC, = 0,; If
(p1, pv2) = (0,0), then SPC,, = P,. From Theorem 4.1, we have

Corollary 4.2. The multiplicative degree-Kirchhoff index of the para-chain P,, the meta-
chain M,, and the ortho-chain O,, are

Kf*(B,) = 36n3 + 32n? + 2n;

Kf*(M,) = 32n3 + 44n? — 6n;

Kf*(0,) = 30n3 + 80n? — 30n.
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Corollary 4.3. Among all spiro chains with n(n > 3) hexagons, the graphs with the
minimum and the maximum multiplicative degree-Kirchhoff index are the ortho-chain 0,
and the para-chain B,, respectively.

Proof. Let SPC, be a spiro chain with n hexagons. By Theorem 4.1, one knows that
fs(p1, p2) = E(Kf*(SPC,)) =(—4n® +12n* — 8n) p; +( —16n° + 48n* —32n) p, +
36n°+32n> +2n. As n23, we have that -2 =—4n®+12n? —8n<0; 2=

p1 op2
—16n3 +48n? -32n < 0.
Note that 0<p,; <1,0<p,<1,0<p, +p, <1, then f5(p,, p,) <3603+
32n? + 2n, with equality if and only if p, = p, = 0, it means that SPC,, is para-chain P,.
On the other hand, we have
f:(p1,p2 ) = (—4n3 +12n? — 8n)(p; + p,) + (—12n3 + 36n? — 24n)p, + 36n3
+32n%2 +2n
> (—4n3 + 12n? — 8n) x 1 + (—12n3 + 36n? — 24n)p, + 36n3 +
32n? +2n
= (—12n3 + 36n2 — 24n)p, + 32n3 + 44n? — 6n
> (—=12n3 + 36n? — 24n) x 1 + 32n3 + 44n% — 6n
> 30n3 + 80n? — 30n,
with equality if and only if p, +p, =1l andp, =1, i.e.p; = 0and p, = 1, it means that
SPC, is ortho-chain 0,,. This completes the proof. ]

5. THE ADDITIVE DEGREE-KIRCHHOFF INDEX OF SPC,,

The additive degree-Kirchhoff index of a random spiro chain SPC,, is random variable. In
the following, we calculate the expected value of Kf*(SPC,). Denote by
E(Kf*(SPC,(p1, p2))) the expected value of additive degree-Kirchhoff index of the
random spiro chain SPC, (p1, p2)-

Theorem 5.1. For n > 1, we have E(Kf*(SPC(py, 12))) = (30 — = py — Zpp)n® +
(115 + 10p, +40p,)n? + G —=p; — 2 py)n.
Proof. We proof it in the Appendix A.4. |

If (p1, p2) = (1,0), then SPC,, = M,,; If (p;, p,) = (0,1), then SPC, = 0,; If
(p1, pv2) = (0,0), then SPC,, = P,. From Theorem 5.1, we have



262 Liu, ZENG, DENG AND TANG

Corollary 5.2. The additive degree-Kirchhoff index of the para-chain P,, the meta-chain
M,, and the ortho-chain 0,, are

Kf*(P,) = 30n3+ 115n2 + gn;
Kf*(My) = 2n® + 12502 — 15n;

Kf*(0n) = >'n® +115n% — 25n.

Corollary 5.3. Among all spiro chains with n (n = 3) hexagons, the graphs with the
minimum and the maximum additive degree-Kirchhoff index are the ortho-chain 0, and
the para-chain B, respectively.

Proof. Let SPC, be a spiro chain with n hexagons. By Theorem 5.1, one knows that
fi(p1, p2) = E(Kf*(SPCy))=(—5'n® + 1002 — 2n) p; +(—5'n® + 4002 — 2n) p, +
10 3 0fs

30n3 + 115n2 + 2n. As n >3, we have that 2o = _ 10, +10n2—9n<0; £ =
3 op, 3 3 ap;

40

80
——-n®+40n* - —n <0.

Note that 0<p, <1,0<p,<1,0<p, +p, <1, then f,(p,, p;) < 30n3+
115n2 + gn, with equality if and only if p;, = p, = 0, it means that SPC,, is para-chain B,.
On the other hand, we have

10 20
fapr.p2) = <—?n3 + 10n® — ?n) (p; + pp) + (—10n3 + 30n? — 20n)p, + 30n3

+115n% + gn
> (=203 +10n2 — Zn) x 1+ (~10n° + 30n% — 20n)p, + 3003 +
115n% +2n
= (—10n3 + 30n2 — 20n)p, + ?rﬁ +125n% —5n
> (—10n3 +30n%? —20n) x 1 + ?rﬁ +125n% —5n

> 5?0n3 + 155n2 — 25n,

with equality if and only if p, +p, =1l andp, =1, i.e. p; = 0and p, = 1, it means that
SPC, is ortho-chain 0,,. This completes the proof. ]

6. AVERAGE VALUES OF THESE INDICES

Denote by 7, the set of all spiro chains with n hexagons. The average value of these
indices among H,, can be characterized as
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o eeat, Gut(G); Sarr(Ha) = 5= Fe e, S(G);

Kfa*vr(}[n) = ﬁZGEﬂn Kf*(G); Kfatr(}[n) = ﬁZGEﬂanﬁ_(G)-

If (p1,p2) = Gé)’ then we can obtain the average value. By Theorems 2.1, 3.1, 4.1,

Gut g, (H,) =

5.1, we have the following result.

Theorem 6.1. The average values of these indices among H, are

Gutavr(}[n) = 48n3 + 72n? — 12n; Savr(:]'[n) = 40n% + 78n% — 10n;

40 3, 395 5 95

Kfa*w(}[n):%n3+52n2—%n; Kfaf,r(}[n):?n - .

We can find that Gutg,,(H,) = Gut(M,) and S, (#,) =S(M,). It means
that we can use the spiro chain M, to characterize the average value of H,, with respect to
Gutman index and Schultz index.

A Appendix
A.1 Proof of Theorem 2.1

Proof. Let Gut(SPC,y,) =A;+ B+ C;, where A; =¥, espe, dw)d()d(u,v);
B = Yvespca\un} Bzietns Nz} AW)A(2))d (v, 2); €y = Z{Zi‘zj}g,nﬂ d(zi)d(zj)d(zi, zj).

Al = Z{u,v}ESPCn\{vn} d(u)d(v)d(u’ U) + ZUESPCn\{vn} dSPCn+1 (un)d(v)d(un’ U),
= Z{u,v}ESPCn\{vn} d(u)d(v)d(u, 'U) + ZUESPCn\{vn}(dSPCn (un) + Z)d(v)d(una v)a
= Gut(SPCn) +2 ZUESPCn d(v)d(un’ 'U).

B, = ZUESPCn Zzieynﬂ d(v)d(z)d (v, z)
—4 Y espc, AW)d (v, uy,) — 4 Y en,,, dW)d(v, zy),
= Yvesrc, AW)[4d(v,u,) + 4(d(v,u,) + 1) +4(d(v,u,) +2) +2(d(v,u,) +
3)] — 4 XYyespc, d(w)d(v,u,) — 4 x 18,
= 10Yyespc, d(w)d(v,u,) + 18(12n — 2).

Cr =238, d(z) (T2, d(2)d(z,2)) = 5(4x 18 +4 % 20 + 4 x 22+ 2 x 24) = 144,

Thus, Gut(SPCpryq) = Gut(SPCy) + 12 % cspc, d()d (v, uy,) + 216n + 108. As
SPC,(p1,p2) is a random spiro chain, ¥,espc, d(v)d(v,u,) is a random variable. Denote
Ut = E(Zpespc, dW)d(v,u,)).  Then E(Gut(SPCphyy)) = E(Gut(SPC,)) + 12U% +
216n + 108.
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In the following, we calculate U} by considering three possible cases.

Case 1. SPC, - SPC},,.
u,(z;) coincides with ys or y; (see Figure 2), thus ¥,espc, d(v)d(v,u,) is given by
Yoespc, A(w)d(v, ys) with probability p;.

Case 2. SPC,, » SPC?2,,.
u,(z;) coincides with y, or y, (see Figure 2), thus ¥,espc, d(v)d(v,u,) is given by

Yoespc, A(w)d (v, ys) with probability p,.

Case 3. SPC,, —» SPC3,,.
u,(z;) coincides with y, (see Figure 2), thus Y,espc, d(v)d(v,u,) is given by
Yvespc, A(W)d(v, y,) with probability p; =1 — p; — p,.
From Case 1, Case 2 and Case 3, we have that
Uy =14 ZUESPCn d(w)d(v,ys) + p; ZUESPCn d(w)d(v,ys)
+(1 = p1 —p2) Zvesec, A(W)d (v, y,),
=D [Zvespcn_l d(W)d(, un-1) + 2 Xvespc, vy} A(V) + 22 |
+ p2 [Zvespcn_l dw)d(w,u,_,) + ZUESPCn_l\{vn_l} d(v) + 20]
+(1-p— Pz)[Zvespcn_l dw)d(w,u,_1) +3 ZUESPCn_l\{vn_l} d(v) + 24]
=p1(Up_y +24n —6) + p,(Up_y +12n+6) + (1 — p; — p;)(Up_, + 36n — 18)
=Ul_, + (36 — 12p, — 24p,)n + (12p, + 24p, — 18).

And the initial value is U = Y espc, d(v)d(v,u;) = 18. Thus,
Uy = (18 — 6p; — 12p,)n® + (6p; + 12p,)n. 1)
So,
E(Gut(SPC,,,)) = E(Gut(SPC,)) + 12U} + 216n + 108,
= E(Gut(SPC,)) + 72(3 — p; — 2p;)n? + 72(3 + p, + 2p,)n + 108.
Since the initial value is E(Gut(SPC;)) = 2% 2% 6 x ; x(1x2+2x2+3) =108,
E(Gut(SPC,)) = (72 — 24p, — 48p,)n® + (72p, + 144p,)n? + (36 — 48p, — 96p,)n
This completes the proof. ]

A.2 Proof of Theorem 3.1

Proof. Let S(SPC,.1) = Ay + B,+C,, where A, = X, piespe, (d(w) + d(v))d(u,v);
B, = Yvespc\un} 2zicHns Mz, KA (W) + d(2:))d (v, z;);
CZ = Z{Zi,Zj}QHn.'_l(d(Zi) + d(Z]))d(Zl’Z])
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AZ = Z{u,v}QSPCn\{vn}(d(u) + d(v))d(u’ U) + ZUESPCn\{vn}(dSPCn+1(un) + d(v))d(un’ U),
= Stuntesrenma (@) + dW)d(w, v) + Zyespe o (dsre, () + 2+

d(v)) d(un, v),
= S(SPCn) +2 ZUESPCn d(un’ 'U)
= S(SPC,) + 2d(u,|SPC,).

B; = Yvesrc, ZziEHn_,_l(d(v) + d(Zi))d(v, z;) — Yyespc, (A(W) + 4)d(v, u,)
— Yvet,,,(d@) +4)d(v, z,),
= Yvesec, AW)d (v, uy,) + 2(d(v, uy) + 1) + 2(d(v, uy,) + 2) + 2(d(v, uy) +
D] + Lvespc,[4d (v, uy) + 4(d(v,uy,) + 1) + 4(d(v, uy,) + 2) +2(d(v, uy) +
] — Zvespc, AW)d(v, uy) — 4 Xpesec, A(v,u,) — 54,
= 5Yespc, A(W)d(v,u,) + 10d (u,|SPC,) + 198n — 18.

C, = X8, d(z) (2%, d(z,2)) = 9% (4 +2x5) = 126.

Thus, S(SPCpi1) = S(SPC,) + 5% uespc, dw)d (v, uy) + 12d(u,|SPC,) +
198n + 108. As SPC, (p1,p,) is a random spiro chain, d(u,|SPC,) is a random variable.
Denote UZ := E(d(u,|SPC,)). Then E(S(SPC,.1)) = E(S(SPC,)) +5UL +12U2 +
198n + 108.

In the following, we calculate U2 by considering three possible cases.

Case 1. SPC,, —» SPC},,.
u,(z;) coincides with ys or y; (see Figure 2), thus d(u,|SPC,) is given by d(ys|SPC,)
with probability p;.

Case 2. SPC,, » SPC?2,,.
u,(z;) coincides with y, or y, (see Figure 2), thus d(u,|SPC,) is given by d(y¢|SPC,)
with probability p,.

Case 3. SPC,, - SPC}, .
u,(z;) coincides with y, (see Figure 2), thus d(u,|SPC,) is given by d(y,|SPC,) with

probability p; =1 — p; — p,.

From Case 1, Case 2 and Case 3, we have that
Ui = p1d(¥s|SPC,) + p,d(v6|SPC,) + (1 — py — p2)d(14ISPCy),
= pl[d(un_llspcn_l) + 2(571 - 5) + 9] + pz [d(un_llspcn_l) + (57’1 - 5) + 9] +
(1 - D1~ pZ)[d(un—ll‘gPCn—l) + 3(57’1 - 5) + 9]1
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=p1(Ui_1 +10n —1) + p,(Ui_, +5n+4) + (1 — p; — p,)(Ui_, + 15n — 6),
= Uj_, + (15— 5p, — 10p,)n + (5p, + 10p, — 6).

And the initial value is UZ? =d(u,|SPC,)=9 . Thus, U2 = %(15 — 5p, —
10p,)n? + %(Sp1 + 10p, + 3)n. From equation 1, Ul = (18 — 6p; — 12p,)n? + (6p, +
12p,)n. We have,

E(S(SPCy41)) = E(S(SPC,)) + 5UL + 12U2 + 198n + 108,
= E(S(SPC,)) + 60(3 — p; — 2p,)n? + 12(18 + 5p, + 10p,)n + 108.
Since the initial value is E(S(SPC;)) = 9 x 6 x 2 = 108, 50
E(S(SPC,)) = (60 — 20p, — 40p,)n® + (18 + 60p, + 120p,)n?
+ (30 — 40p, — 80p,)n
This completes the proof. [

A.3 Proof of Theorem 4.1

Proof. Let Kf*(SPC,i1) = A3+ B3+C3, where Az = Xy, yespe, d)d()r(u,v);
By = Xvespea\un) Lzietin Mz AW AT, 2,); G = Xpy, 2 ey, d(z)d(z)r(z;, z;).
Az = Yruviespe N, AW)d@)r(w, v) + Yoespc v, dspe,, , Un)d(W)1(uy, v),

= Y {ur}SsPc,\vy} dw)d)r(u,v) + ZUESPCn\{vn}(dSPCn (u,) + Z)d(v)r(un, ),

= Kf*(SPCy) + 2 ¥ yespc, d()r(uy, v).

B; = ZUESPCn ZziEHn_,_l dw)d(z)r(v,z;) — 4 ZUESPCn d)r(v, u,)
—4Yen,,, AW)r(v, z,),
= Yvesrc, dW)[4r(v,u,) + 4 (r(v, Uu,) + Z) +4 (r(v, Uy) + g) +2 (r(v, u,) +

= 4 Byesee, d@Ir(w,u,) —4x 2,

= 10 yespc, AWIr(v,u,) + 2 (12n - 2).

C3 = ;Z?ﬂ d(z) (X521 d(z)r(z,2)) = §(4 x % +4 % % +4 % % +2 x %) = %.
Thus, Kf*(SPCpi1) = Kf*(SPC,) +12% ,espc, d(W)r(v,u,) + 140n+70 . As
SPC,(p1,p2) is arandom spiro chain, ¥, espc, d(v)r (v, uy,) is a random variable.
Denote U3 := E(Tpespc, AWIr(v,uy,)). Then E(Kf*(SPCpy1)) = E(Kf*(SPC,)) +
12U3 + 140n + 70.
In the following, we calculate U3 by considering three possible cases.
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Case 1. SPC, - SPC},,.
u,(z;) coincides with ys or y; (see Figure 2), thus ¥ espc, d(v)r(v, u,) is given by
Yoespc, A(W)r(v, ys) with probability p; .

Case 2. SPC,, —» SPC?,,.
u,(z;) coincides with y or y, (see Figure 2), thus ¥ espc, d(v)r(v,u,) is given by

Yoespc, AW)r(v, ye) with probability p,.

Case 3. SPC,, - SPC}, .
u,(z;) coincides with y, (see Figure 2), thus Y,espc, d(W)r(v,uy) is given by

Yvespc, A(W)r(v, y,) with probability p; =1 — p; — p,.
From Case 1, Case 2 and Case 3, we have that

Uy =1 Yivespcy d()r(v,ys) + p, Yivespcy d(W)r(v,ye)
+(1 - p1 —p2) Lvespc, d(W)r(v,y,),

=P [ZUESPCn_l d(v)r(v, un_l) +2 ZUESPCn—l\{Un—1} d(‘l)) —+ 33—4]
+p; [ZUESPCn_l d(v)r(v, un—1) + Zyespcn_l\{vn_l} d(v) + 43—O]
+(1 - P11~ pZ) [ZUESPCn_l d(v)r(v, un_1) +3 ZUESPCn—1\{Un—1} d(’U) + % ,
= pi (Ui + 160 =) +py (Ui +10n+2) + (1= py = po)(Ui, + 180~ ),
=U3_, + (18— 2p, — 8p,)n + (2p, + 8p, — ?),
And the initial value is U} = Tyespc, d(0)r(v,u;) = = Thus,
U3 =9 —p, —4p,)n?+ (g +p; +4py)n. (2)
So,
E(Kf*(SPCny1)) = E(Kf*(SPC,)) + 12U3 + 140n + 70 = E(Kf*(SPC,)) +
(108 — 12p; — 48p,)n? + (172 + 12p, + 48p,)n + 70.
Since the initial value is E(Kf*(SPC;)) =2 x 2 x 6 x i x (Z x 2 + g x 2 + ;) =70,

E(Kf*(SPC,)) = (36 — 4p, — 16p,)n® + (32 + 12p, + 48p,)n? + (2 — 8p;, — 32p,)n.
This completes the proof. ]

A.4 Proof of Theorem 5.1
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Proof. Let Kf*(SPCp41) = Ay + By+Cy, Where Ay = Yoy syespc, (d () + d())r(u,v);
B4 = ZUESPCn\{un} ZziEHn.,.l\{zl}(d(v) + d(Zi))T(U, Zi) and C4- = Z{zi,zj}gHm.l(d(Zi) +

d(zj))r(zi,zj).

A4 = Z{u,v}QSPCn\{vn}(d(u) + d(v))r(u’ U) + ZUESPCn\{vn}(dSPCn+1(un) + d(v))r(un’ U),
= Stunesrenoa( @) + dW)r(w v) + Toesen (dsec, () +2+

d(v))(un,v),

= Kf+(SPCn) + 2 ZUESPCn r(un’ 'U)
= Kf+*(SPC,) + 2r(u,|SPC,).

B, = Yyesrc, Zzieynﬂ(d(v) +d(z))r(v,z;) — Xyespc, (A(W) + 4)r(v,u,) —
Yven,,,(d@) + Br(v, z,),
= Yvespc, AW)[r(v,u,) + 2 (r(v, u,) + Z) +2 (r(v, u,) + g) +2 (r(v, u,) +

N+ Toesee[4r@,) + 4 (r,1,) +2) + 4 (1, 1) + ) +2 (v, u,) +

1= Zoespe, AW (v,un) = 4 Tvespe, 70 ) = 5= 4% 2,

= 5T yespc, AW, uy) + 107 (uy |SPC,) + 22n — 2

Co =20, d(z) (Boo17(z,2)) == x (4+2x5) =22

3 "

Thus, Kf*(SPCyiq) = KfT(SPCy) + 5 Xyespc, dW)r(v,up) + 12r(uy|SPC,) +

%n + 70. As SPC,(p1,p2) Is a random spiro chain, r(u,|SPC,) is a random variable.

Denote U, :== E(r(u,|SPC,)). Then E(Kf*(SPC,..)) =EEf+*(SPC,))+5U3+
120 +>2n + 70,

In the following, we calculate U2 by considering three possible cases.
Case 1. SPC,, - SPC},,.

u,(z;) coincides with ys or y; (see Figure 2), thus r(u,|SPC,) is given by

r(ys|SPC,,) with probability p;.
Case 2. SPC,, » SPC?2,,.
u,(z,) coincides with y, or y, (see Figure 2), thus r(u,|SPC,) is given by

r(y6|SPC,,) with probability p,.

Case 3. SPC,, - SPC}, .
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u,(z;) coincides with y, (see Figure 2), thus r(u,|SPC,) is given by r(y,|SPC,)
with probability p; = 1 — p; — p,. From Case 1, Case 2 and Case 3, we have that
Up = 017 (¥5|SPC,) + par (¥6ISPCr) + (1 — py — p)r(valSPCy),

= py [r(noaISPCoy) +2 (51 = 8) + | + p; [y ISPC,y) + 2 (5n — 5) +
B+ @ - py— ) [r@aeslSPCy) + 2 (Bn - 5) + 2],
5 5 5 15 5
=p1(Up_y + ?n - g) +p,(Uy_y + %n + g) +(A - p—p)(Uy_y + S n- g),

15 s 10 5 10 5
=Up 1+ (Z—>p1— ?Pz)n + (gP1 + <2 _g)-

And the initial value is U# = r(u, |SPC,) = % Thus,

15 5 5 5 5 25
Up = (=51 —5p2)n* +(Sp Hop2 + N
From Equation 2,
8
Uy = (9 —p1 —4p)n* + (g +p1 +4p;)n.
We have

E(Kf*(SPCyy1)) = E(Kf(SPC,)) + 5U3 + 12U} + 3;in + 70,
= E(Kf*(SPC,)) + (90 — 10p; — 40p,)n® + (5= + 10p, + 40p, ) n + 70.
Since the initial value is E(Kf*(SPC;)) = 70, so
E(Kf*(SPC,)) = (30 = 2p; — 5p,) n® + (115 + 10p, + 40p,)n?

3 3 P1T 3P

This completes the proof. ]
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