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The modified first Zagreb connection index ZCଵ∗ for a graph G is 
defined as ZCଵ∗(G) = ∑  ୴∈୚(ୋ) d୴τ୴ , where d୴ is the degree of the 
vertex v and τ୴ is the connection number of v (that is, the number of 
vertices having distance 2 from v). A branching vertex of a graph is 
a vertex with degree greater than 2. In this paper, graphs with the 
maximum and minimum ZCଵ∗ values are characterized from the class 
of all trees of a fixed order and having a fixed number of branching 
vertices.  
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1. INTRODUCTION  

Throughout this paper, we are concerned with only simple and finite graphs. For a vertex 
ݒ ∈  is denoted by ݀௩ and is defined as the number of vertices ݒ the degree of ,(ܩ)ܸ
adjacent to ݒ. Let ܰ(ݒ) be the neighborhood of the vertex ݒ ∈  and the maximum ,(ܩ)ܸ
degree of a graph ܩ is denoted by Δ(ܩ). Let ݊௜(ܩ) (or simply ݊௜) be the number of vertices 
of degree ݅ in a graph ܩ and ݔ௜,௝(ܩ) (or ݔ௜,௝) denotes the number of edges connecting the 
vertices of degree ݅ and ݆ in a graph ܩ. A vertex with degree 1 in a graph is said to be a 
pendent vertex and a vertex with degree 3 or more is called a branching vertex. A pendent 
path in a graph is a path in which one of the end vertices is pendent and the other is 
branching, and all the internal vertices (if exist) have degree 2. An internal path in a graph 
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is a path in which both the end vertices are branching and all the internal vertices (if exist) 
have degree 2. If ܩ is a graph with vertex set ܸ(ܩ) = ,ଵݒ} ,ଶݒ . . . ,  ௡}, the sequenceݒ
(݀௩భ , . . . ,݀௩೙) is called a degree sequence of ܩ. Undefined terminology and notation of 
(chemical) graph theory can be found in [12, 22, 35]. 

A topological index is a number that can be associated with chemical structures to 
predict their different properties [9]. Topological indices play an important role in 
mathematical chemistry particularly in the quantitative structure-property relationship and 
quantitative structure-activity relationship investigations. It is generally accepted fact that 
Wiener index [37] is one of the first topological indices that found applications in 
chemistry. 

The first Zagreb index ܯଵ (appeared in [20]) and the second Zagreb index ܯଶ 
(devised in [21]) are among the oldest and the most studied degree-based topological 
indices. For a graph ܩ, these indices are defined as: 

(ܩ)ଵܯ  = ∑  ௩∈௏(ீ) (݀௩)ଶ      and      ܯଶ(ܩ) = ∑  ௨௩∈ா(ீ) ݀௨݀௩ , 
where ݀௨, ݀௩ are degrees of the vertices ݑ, ݒ ∈  represents the (ܩ)ܧ respectively, and ,(ܩ)ܸ
edge set of ܩ. Till now, many papers have been devoted to these Zagreb indices, for 
example, see the surveys [15, 18, 28], particularly the recent ones [1, 7, 10, 11], and the 
related references cited therein. 

The paper [20], where the first Zagreb index was appeared, also contain another 
topological index, which did not gain explicit attention from researchers till 2016. 
Recently, this index was reconsidered in [6] and referred to as the modified first Zagreb 
connection index. It is denoted by ܼܥଵ∗ and for a graph ܩ, it is defined as 

(ܩ)∗ଵܥܼ  = ∑  ௩∈௏(ீ) ݀௩߬௩  
where ߬௩ is the connection number of ݒ (that is, the number of vertices having distance 2 
from ݒ, see [36]). The topological index ܼܥଵ∗ was referred to as the third leap Zagreb index 
in [27]. Detail about the mathematical properties of the index ܼܥଵ∗ can be found in [2-5, 13, 
14, 23, 26, 29-34, 38, 39] 

The problem of finding (lower and upper) bounds on a topological index over the 
certain classs of graphs with fixed order and to characterize corresponding extremal graphs, 
is one of the most popular research problems in chemical graph theory. Detail about the 
research done on these lines can be found in [8, 15-19, 24, 25, 28, 31] and the related 
references cited therein. 

In this paper, we contribute further in this direction by characterizing the graphs 
with the maximum and minimum ܼܥଵ∗ values from the class of all ݊-vertex trees with a 
fixed number of branching vertices. Denote by ࣮∗

௡,௕ the class of all ݊-vertex trees with 
exactly ܾ branching vertices. Note that each tree different from the path graph contains at 
least one branching vertex, implying ܾ ≥ 1. Also, for an arbitrary tree ܶ ∈ ࣮∗

௡,௕, Lin [25] 
proved that ܾ ≤ ௡

ଶ
− 1. Thus, we assume 1 ≤ ܾ ≤ ௡

ଶ
− 1. 



On the Modified First Zagreb Connection Index                                                                        215 

 

2. MAIN RESULTS 

Problem. Characterize all the trees with maximum and minimum modified first Zagreb 
connection index from the class ࣮∗

௡,௕ for 1 ≤ ܾ ≤ ௡
ଶ
− 1. 

 
Since ࣮∗

ସ,ଵ contains a unique tree ଵܶ whereas ࣮∗
ହ,ଵ contains only two trees ଶܶ and 

ଷܶ given in Figure 1, such that ܼܥଵ∗( ଶܶ) = )∗ଵܥܼ ଷܶ); therefore, we will proceed with ݊ ≥ 6. 
 

 
 

Figure 1: Trees for ࣮∗
ସ,ଵ and ࣮∗

ହ,ଵ. 
 

Theorem 1. Let ܶ ∈ ࣮∗
௡,௕ , where ݊ ≥ 6 and 1 ≤ ܾ ≤ ௡

ଶ
− 1, then 

 

(ܶ)∗ଵܥܼ  ≥ ൜4݊ + 4ܾ − 14 ݂݅  ݊ ≥ 3ܾ + 1 ,
2݊ + 10ܾ − 12 ݂݅  ݊ < 3ܾ + 1 , 

 
with equality if and only if ܶ ∈ ℬ∗

௠௜௡(݊, ܾ), where ℬ∗
௠௜௡(݊, ܾ) is the family of all ݊-

vertex trees with the degree sequence (3,3, . . . ,3ᇣᇧᇤᇧᇥ
௕

, 2,2, . . . ,2ᇣᇧᇤᇧᇥ
௡ିଶ௕ିଶ

, 1,1, . . . ,1ᇣᇧᇤᇧᇥ
௕ାଶ

), and the vertices of 

degree 2 are placed between the vertices of degree 3 so that there is at least one vertex of 
degree 2 between any two vertices of degree 3 (if we have enough vertices of degree 2, i.e., 
݊ଶ ≥ ݊ଷ − 1 implying ݊ ≥ 3ܾ + 1), and then the remaining vertices of degree 2 (if they 
exist) are placed arbitrarily between any two vertices of degree 2 or one vertex of degree 2 
and one vertex of degree 3. 

Ducoffe in [16] proved that the trees with ݊ ≥ 4 vertices having the maximum 
value of modified first Zagreb connection index are the trees with a diameter at most 3, that 
is for ܾ = 1 ( respectively ܾ = 2), the star graph (respectively double star graph) gives the 
maximum value (݊ − 2)(݊ − 1) to ܼܥଵ∗. 
 
Theorem 2. Let ܶ ∈ ࣮∗

୬,ୠ, where ݊ ≥ 6 and 3 ≤ ܾ ≤ ௡
ଶ
− 1, then  

(ܶ)∗ଵܥܼ  ≤ ቐ
݊ଶ − 3݊ − 4ܾଶ + 12ܾ − 6 ݂݅    3 ≤ ܾ ≤ ௡ାଶ

ଷ
 ,

5݊ଶ + 20ܾଶ − 20ܾ݊ − 3݊ + 20ܾ − 22 ݂݅    ௡ାଶ
ଷ

< ܾ ≤ ௡
ଶ
− 1,
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and the equality holds if and only if ܶ ≅ ଵ∗ for 3ܤ ≤ ܾ ≤ ௡ାଶ
ଷ

, where ܤଵ∗ is a tree with 
degree sequence (݊ − 2ܾ + 1, 3,3, . . . ,3ᇣᇧᇤᇧᇥ

௕ିଵ
, 1,1, . . . ,1ᇣᇧᇤᇧᇥ

௡ି௕
) given in Figure 2, and ܶ ∈ ଵܶ

∗(݊, ܾ) for 

௡ାଶ
ଷ

< ܾ ≤ ௡
ଶ
− 1, where ଵܶ

∗(݊,ܾ) is the set of ݊-vertex trees with the degree sequence 
(݊ − 2ܾ + 1, 3,3, . . . ,3ᇣᇧᇤᇧᇥ

௕ିଵ
, 1,1, . . . ,1ᇣᇧᇤᇧᇥ

௡ି௕
) such that the vertex of degree ݊ − 2ܾ + 1 has only 

branching neighbors.  
 

 
Figure 2: Maximum Tree for 3 ≤ ܾ ≤ ௡ାଶ

ଷ
. 

 
2.1. PROOF OF THEOREM 1 

Denote by ܶ௠௜௡
∗  the tree with minimum modified first Zagreb connection index among all 

the members of ࣮∗
௡,௕ for ݊ ≥ 6 and 1 ≤ ܾ ≤ ௡

ଶ
− 1. Then the following properties hold for 

ܶ௠௜௡
∗ : 

 
Lemma 1. A branching vertex in the tree ܶ௠௜௡

∗ ∈ ࣮∗
௡,௕ contains at least one non-pendent 

neighbor.   
 
Proof. It can easily be observed that for ܾ ≥ 2 the result is obvious, so we prove the result 
for ܾ = 1. Contrarily, suppose ܶ௠௜௡

∗  is a star graph that is, the branching vertex ݒ of ܶ௠௜௡
∗  

contains pendent neighbors only. Let ܰ(ݒ) = ,ଵݒ} ,ଶݒ . . . ,  .ݒ ௗೡ} be the set of neighbors ofݒ
The assumption ݊ ≥ 6 ensures that ݀௩ ≥ 5. If a tree ܶᇱ is obtained from ܶ௠௜௡

∗  as ܶᇱ =
ܶ௠௜௡
∗ − ,ସݒݒ} {ହݒݒ + ᇱܶ ,{ହݒସݒ,ସݒଵݒ} ∈ ࣮∗

௡,௕ and   
 
ଵ∗(ܶᇱ)ܥܼ − ଵ∗(ܶ௠௜௡ܥܼ

∗ ) = (݀௩ − 3)(2(݀௩ − 2) − 1 − ݀௩ + 2) + (4(݀௩ − 2)− 2− ݀௩ + 2) 
                       +(4) + (1)− ݀௩(2݀௩ − 1− ݀௩) 
                   = 6 − 2݀௩ < 0, 

which is a contradiction to the minimality of ܶ௠௜௡
∗ .                                                               □ 
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Lemma 2. Every branching vertex in the tree ܶ௠௜௡
∗ ∈ ࣮∗

௡,௕ has degree 3.  
 
Proof. Contrarily, we assume that the tree ܶ௠௜௡

∗  contains a branching vertex ݒ of degree 
greater than 3 such that the degree of ݒ in ܶ௠௜௡

∗  is maximum. Suppose ܰ(ݒ) =
൛ݒଵ,ݒଶ, ,ଷݒ ,ସݒ . . . ,  ௗೡൟ such thatݒ

݀௩భ = ݉݅݊{݀௩భ, ݀௩మ , . . . , ݀௩೏ೡ} and ݀௩మ = ௩భ݀}ݔܽ݉ ,݀௩మ , . . . , ݀௩೏ೡ}. 
Let ݖଵ denotes a pendent vertex connected to ݒ via ݒଵ and ݖଶ be the neighbor of ݖଵ (ݖଵ may 
coincide with ݒଵ or ݖଶ = (ଵݒ)݀ if ݒ = 1).  
 

 
Figure 3: ܶ௠௜௡

∗  and ܶᇱ. 
  
Let ܶᇱ be the tree obtained from ܶ௠௜௡

∗  by deleting the edge ݒݒଶ and adding the new edge 
ଶ (see Figure 3). We note that ܶᇱݒଵݖ ∈ ࣮∗

௡,௕ and the only vertices whose degrees differ in 
ܶ௠௜௡
∗  and ܶᇱ are ݒ and ݖଵ. If ݒଵ ≠ ଵ or ݀௩భݖ > 1, ݀௩೔ ≥ 2 for 2 ≤ ݅ ≤ ݀௩ . Also, by keeping 

in mind the facts ݀௭మ ≤ ݀௩ and ∑  ௗೡ
௜ୀଵ,௜ஷଶ (2݀௩೔ − 1)) ≥ 9, we have 

ଵ∗(ܶᇱ)ܥܼ − ଵ∗(ܶ௠௜௡ܥܼ
∗ ) = ෍  

ௗೡ

௜ୀଵ,௜ஷଶ

(2(݀௩ − 1)݀௩೔ − ݀௩೔ − ݀௩ + 1) + (4݀௭మ − 2 − ݀௭మ) 

                            +(4݀௩మ − 2 − ݀௩మ) −∑  ௗೡ
௜ୀଵ,௜ஷଶ (2݀௩݀௩೔ − ݀௩೔ − ݀௩) 

                            −(2݀௭మ − 1 − ݀௭మ) − (2݀௩݀௩మ − ݀௩ − ݀௩మ) 

                          = −∑  ௗೡ
௜ୀଵ,௜ஷଶ (2݀௩೔ − 1)) + 2݀௭మ + 4݀௩మ − 2݀௩݀௩మ + ݀௩ − 3 

                          ≤ 4݀௩మ − 2݀௩݀௩మ + 3݀௩ − 12,  
which is negative because the function ݂ defined by ݂(ܽ, ܾ) = 4ܽ − 2ܾܽ + 3ܾ − 12, with 
ܽ ≥ 2 and ܾ ≥ 4, is negative, and hence we have ܼܥଵ∗(ܶᇱ) < ଵ∗(ܶ௠௜௡ܥܼ

∗ ), a contradiction to 
the choice of ܶ௠௜௡

∗ . 
Also, in a special case when ݒଵ = ଶݖ ,.ଵ (i.eݖ = Lemma 1 ensures that ݀௩మ ,(ݒ ≥ 2 and 
∑  ௗೡ
௜ୀଷ (2݀௩೔ − 1)) ≥ 2 we have,   

ଵ∗(ܶᇱ)ܥܼ              − ଵ∗(ܶ௠௜௡ܥܼ
∗ ) = ∑  ௗೡ

௜ୀଷ (2(݀௩ − 1)݀௩೔ − ݀௩೔ − ݀௩ + 1) + (4݀௩మ − 2 − ݀௩మ) 

                              +(4(݀௩ − 1)− 2 − ݀௩ + 1)− ∑  ௗೡ
௜ୀଷ (2(݀௩)݀௩೔ − ݀௩೔ − ݀௩) 
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                              −(2݀௩ − 1 − ݀௩) − (2݀௩݀௩మ − ݀௩ − ݀௩మ) 

                              = −∑  ௗೡ
௜ୀଷ (2݀௩೔ − 1)) + 4݀௩మ − 2݀௩݀௩మ + ݀௩ − 6 

                              ≤ 4݀௩మ − 2݀௩݀௩మ + 3݀௩ − 8 
which is negative because the function ݂ defined by ݂(ܽ, ܾ) = 4ܽ − 2ܾܽ + 3ܾ − 8 with 
ܽ ≥ 2 and ܾ ≥ 4, is negative, and hence a contradiction.                                                      □ 

 
Consequently, in the tree ܶ௠௜௡

∗  there are only vertices of degree 1, 2, or 3. Now 
keeping in mind ݊௜ = 0 for ݅ ≥ 4 and using the facts ∑  ௜ ݅݊௜ = 2(݊ − 1) and ∑  ௜ ݊௜ = ݊, we 
arrive at ݊ଵ = ݊ଷ + 2. Also, it holds that ݊ଵ = ܾ + 2 and ݊ଶ = ݊ − 2ܾ − 2 since ݊ଷ = ܾ. 
Now we prove some more lemmas to obtain the structure of ܶ௠௜௡

∗ . 
  

Lemma 3. If a branching vertex ݒ in the tree ܶ௠௜௡
∗ ∈ ࣮∗

௡,௕ contains a non-pendent 
neighbor (say) ݓ, then ܶ௠௜௡

∗  does not contain any pendent path of length greater than 1 
adjacent to the vertex ݒ via a neighbor different from ݓ.  
 
Proof. Contrarily, assume that there is a path ܲ:ݑ଴ݑଵݑଶ. . . ݐ with ݒ௧ݑ௧ିଵݑ ≥ 1 in ܶ௠௜௡

∗  
where ݀௨బ = 1, ݀௨భ = ݀௨మ = ⋯ = ݀௨೟ = 2 and ݒ௧ ≠   .ݓ

Let ܶᇱ = ܶ௠௜௡
∗ − ,ݒ௧ݑ,ଵݑ଴ݑ} {ݓݒ + ,ଵݑݒ,ݒ଴ݑ}  We can observe that .{ݓ௧ݑ

ܶᇱ ∈ ࣮∗
௡,௕ . As Lemma 2 ensures that ݀௩ = 3, also using ݀௪ ≥ 2, we have   
ଵ∗(ܶ௠௜௡ܥܼ 

∗ )− ଵ∗(ܶᇱ)ܥܼ = 2(݀௪ − 1) > 0, 
which implies that ܼܥଵ∗(ܶᇱ) < ଵ∗(ܶ௠௜௡ܥܼ

∗ ), hence a contradiction to the choice of ܶ௠௜௡
∗ .      □ 

Lemma 4. If the tree ܶ௠௜௡
∗ ∈ ࣮∗

௡,௕ contains any pair of adjacent branching vertices then it 
does not contain any internal path of length greater than 2.  

  
Proof. Suppose, on the contrary, that there is an internal path ܲ:ݑଵݑଶ⋯ݑ௦ of length at 
least 3 in ܶ௠௜௡

∗  provided that ݑଵ and ݑ௦ are branching vertices, let there also exists a pair of 
adjacent, branching vertices ݑ and ݒ in ܶ௠௜௡

∗ . Lemma 2 confirms that ݀௨ = ݀௩ = 3. If 
ܶᇱ = ܶ௠௜௡

∗ − ,ଶݑଵݑ} ,ଷݑଶݑ {ݒݑ + ,ଷݑଵݑ} ᇱܶ ,{ݒଶݑ,ଶݑݑ ∈ ࣮∗
௡,௕ , and   

ଵ∗(ܶ௠௜௡ܥܼ
∗ )− ଵ∗(ܶᇱ)ܥܼ = 2 > 0 

or ܼܥଵ∗(ܶᇱ) < ଵ∗(ܶ௠௜௡ܥܼ
∗ ), which is a contradiction to the choice of ܶ௠௜௡

∗ .                            □ 
 
Now, we can prove Theorem 1.  
 
Proof of Theorem 1. By Lemmas 1−4, one can conclude that the tree ܶ௠௜௡

∗  from ࣮∗
௡,௕ 

must belong to ℬ∗
௠௜௡(݊,ܾ). We have further two cases: 
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For ݊ < 3ܾ + 1 we get ݔଵ,ଶ = ଶ,ଶݔ = ଵ,ଷݔ ,0 = ܾ + ଶ,ଷݔ ,2 = 2݊ − 4ܾ − 4 and 
ଷ,ଷݔ = 3ܾ − ݊ + 1. Therefore, ܼܥଵ∗(ܶ௠௜௡

∗ ) = ଵ,ଶݔ + ଶ,ଶݔ4 + ଵ,ଷݔ2 + ଶ,ଷݔ7 + ଷ,ଷݔ12 = 2݊ +
10ܾ − 12. 

Similarly, for ݊ ≥ 3ܾ + 1, we have ݔଵ,ଶ = ଶ,ଶݔ ,0 = ݊ − 3ܾ − ଵ,ଷݔ ,1 = ܾ + 2, 
ଶ,ଷݔ = 2ܾ − 2 and ݔଷ,ଷ = 0. Hence, ܼܥଵ∗(ܶ௠௜௡

∗ ) = ଵ,ଶݔ + ଶ,ଶݔ4 + ଵ,ଷݔ2 + ଶ,ଷݔ7 + ଷ,ଷݔ12 =
4݊ + 4ܾ − 14 which completes the proof.                                                                             □ 
 
2.2. PROOF OF THEOREM 2 

We first find the structure of the tree that maximizes the modified first Zagreb connection 
index among all ݊-vertex trees with a fixed number of branching vertices. Now, let ௠ܶ௔௫

∗  be 
the tree with maximum ܼܥଵ∗ value among all the members of ࣮∗

௡,௕ for 3 ≤ ܾ ≤ ௡
ଶ
− 1. To 

prove the main result of this section, we need to establish some lemmas first. 
 

Lemma 5. The tree ௠ܶ௔௫
∗ ∈ ࣮∗

௡,௕ does not contain any vertex of degree 2.  
 
Proof. Recall that ܾ ≥ 3. Contrarily suppose ௠ܶ௔௫

∗  contains a vertex ݑ of degree 2 adjacent 
to a branching vertex ݓ. Let ܰ(ݑ) = (ݓ)ܰ and {ݓ,ݒ} = ,ଶݓ,ଵݓ,ݑ} . . .  ௗೢିଵ}. If ܶᇱ isݓ,
the tree obtained from ௠ܶ௔௫

∗  by deleting the edge ݒݑ and adding the new edge ݓݒ, ܶᇱ ∈
࣮∗

௡,௕ and keeping in mind the fact ܾ ≥ 3 which implies that if ݀௩ = 1 then 
∑  ௗೢିଵ
௝ୀଵ (2݀௪ೕ − 1) ≥ 4, and if ݀௩ > 1 then ∑  ௗೢିଵ

௝ୀଵ (2݀௪ೕ − 1) ≥ 2, we have   
ଵ∗(ܶᇱ)ܥܼ − )∗ଵܥܼ ௠ܶ௔௫

∗ ) = (2(݀௪ + 1)− 1 − ݀௪ − 1) + (2(݀௪ + 1)݀௩ − ݀௪ − 1 − ݀௩) 
                   +∑  ௗೢିଵ

௝ୀଵ (2(݀௪ + 1)݀௪ೕ − ݀௪ೕ − ݀௪ − 1) 
                   − (4݀௩ − 2 − ݀௩) − (4݀௪ − 2− ݀௪) 
                   −∑  ௗೢିଵ

௝ୀଵ (2݀௪݀௪ೕ − ݀௪ೕ − ݀௪) 

                   = (݀௪ − 1)(2݀௩ − 3) + ∑  ௗೢିଵ
௝ୀଵ (2݀௪ೕ − 1) 

                   ≥ 2(2݀௩ − 3) + ∑  ௗೢିଵ
௝ୀଵ (2݀௪ೕ − 1) 

                   > 0, 
which is a contradiction.                                                                                                         □ 

 
Consequently, Lemma 5 ensures that the tree ௠ܶ௔௫

∗  contains only pendent vertices 
and branching vertices. Denote by (ݔ)ߤ the sum of the degrees of vertices adjacent to a 
vertex ݔ in ௠ܶ௔௫

∗ . We also need the following result: 
 

Lemma 6. If the tree ௠ܶ௔௫
∗  contains two vertices ݑ and ݒ with degrees at least 4 (i.e. 

݀௨ ≥ 4 and ݀௩ ≥ 4) with assumptions ܰ(ݑ) = ,ଶݑ,ଵݑ} . . . , (ݒ)ܰ ,{ௗೠݑ = ,ଵݒ} ,ଶݒ . . . ,  {ௗೡݒ
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and (ݒ)ߤ ≥ ଵݑ ଵ(it may beݑ via ݒ is connected to ݑ such that (ݑ)ߤ =  then there is a ,(ݒ
tree ܶᇱ = ௠ܶ௔௫

∗ − :௜ݑݑ} 4 ≤ ݅ ≤ ݀௨} + :௜ݑݒ} 4 ≤ ݅ ≤ ݀௨} such that ܶᇱ ∈ ࣮∗
௡,௕ (see Figure 

6) and ܼܥଵ∗( ௠ܶ௔௫
∗ ) <   .ଵ∗(ܶᇱ)ܥܼ

 
Figure 4: ௠ܶ௔௫

∗  and ܶᇱ. 
    

Proof. We consider the following cases: 

Case 1. The vertices ݑ and ݒ are non-adjacent.   
ଵ∗(ܶᇱ)ܥܼ  − )∗ଵܥܼ ௠ܶ௔௫

∗ ) = ∑  ௗೡ
௜ୀଵ (2݀௩೔(݀௩ + ݀௨ − 3) − ݀௩೔ − ݀௩ − ݀௨ + 3) 

                              +∑  ௗೠ
௝ୀସ (2݀௨ೕ(݀௩ + ݀௨ − 3) − ݀௨ೕ − ݀௩ − ݀௨ + 3) 

                              +(6݀௨భ − 3 − ݀௨భ) + (6݀௨మ − 3 − ݀௨మ) 

                              +(6݀௨య − 3 − ݀௨య) − ∑  ௗೡ
௜ୀଵ (2݀௩೔݀௩ − ݀௩೔ − ݀௩) 

                           −∑  ௗೠ
௝ୀସ (2݀௨ೕ݀௨ − ݀௨ೕ − ݀௨) − (2݀௨భ݀௨ − ݀௨భ − ݀௨) 

                               −(2݀௨మ݀௨ − ݀௨మ − ݀௨) − (2݀௨య݀௨ − ݀௨య − ݀௨) 
                               = (݀௨ − 3)(∑  ௗೡ

௜ୀଵ (2݀௩೔ − 1)− ∑  ଷ
௜ୀଵ (2݀௨೔ − 1)) 

                           +(݀௩ − 3)∑  ௗೠ
௝ୀସ (2݀௨ೕ − 1) 

                            > 0, 
which is a contradiction, where we have used the facts ∑  ௗೡ

௜ୀଵ (2݀௩೔ − 1) ≥ ∑  ଷ
௜ୀଵ (2݀௨೔ −

1), ∑  ௗೠ
௝ୀସ (2݀௨ೕ − 1) ≥ 1, ݀௨ > 3 and ݀௩ > 3. 

 
Case 2. The vertices ݑ and ݒ are adjacent, that is, ݒଵ = ݒ and also) ݑ =   .(ଵݑ
Denote by ߤஷ௨(ݒ) (respectively ߤஷ௩(ݑ)) the sum of the degrees of vertices adjacent to ݒ 
(respectively ݑ), different from ݑ (respectively ݒ). Now, we compare ߤஷ௨(ݒ) and ߤஷ௩(ݑ). 
Suppose, without loss of generality, ߤஷ௩(ݑ) ≤ We can transform the tree ௠ܶ௔௫ .(ݒ)ஷ௨ߤ

∗  
into the tree ܶᇱ, as described in Case I. It holds that   
ଵ∗(ܶᇱ)ܥܼ  − )∗ଵܥܼ ௠ܶ௔௫

∗ ) = ∑  ௗೡ
௜ୀଶ (2݀௩೔(݀௩ + ݀௨ − 3) − ݀௩೔ − ݀௩ − ݀௨ + 3) 

                + ∑  ௗೠ
௝ୀସ (2݀௨ೕ(݀௩ + ݀௨ − 3) − ݀௨ೕ − ݀௩ − ݀௨ + 3) 

                           + (6݀௨మ − 3 − ݀௨మ)  + 3ݑ6݀) − 3 −  (3ݑ݀
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               +  (6(݀௩ + ݀௨ − 3) − 3 − ݀௩ − ݀௨ + 3) 
               −∑  ௗೡ

௜ୀଶ (2݀௩೔݀௩ − ݀௩೔ − ݀௩) −∑  ௗೠ
௝ୀସ (2݀௨ೕ݀௨ − ݀௨ೕ − ݀௨) 

               −(2݀௨݀௩ − ݀௨ − ݀௩) − (2݀௨݀௨మ − ݀௨ − ݀௨మ) 
               −(2݀௨݀௨మ − ݀௨ − ݀௨మ) 

               = (݀௨ − 3)(∑  ௗೡ
௜ୀଶ (2݀௩೔ − 1)− ∑  ଷ

௜ୀଶ (2݀௨೔ − 1) − (݀௩ − 3)) 

               +(݀௩ − 3)(∑  ௗೠ
௝ୀସ (2݀௨ೕ − 1) − (݀௨ − 3)) 

               > 0, 
which is again a contradiction to the choice of ௠ܶ௔௫

∗  due to the fact ܾ ≥ 3 implying that 
either ∑  ௗೡ

௜ୀଵ (2݀௩೔ − 1) > ∑  ଷ
௜ୀଵ (2݀௨೔ − 1)− (݀௩ − 3) and ∑  ௗೠ

௝ୀସ (2݀௨ೕ − 1) ≥ (݀௨ − 3) 

or ∑  ௗೡ
௜ୀଵ (2݀௩೔ − 1) ≥ ∑  ଷ

௜ୀଵ (2݀௨೔ − 1)− (݀௩ − 3) and ∑  ௗೠ
௝ୀସ (2݀௨ೕ − 1) > (݀௨ − 3). This 

completes the proof.                                                                                                               □ 
 

Let ଷܸ( ௠ܶ௔௫
∗ ) = ௠ݒ} ⋯,ଶݒ,ଵݒ, ,  ௕ିଵ} denote the set of all branching vertices fromݒ

௠ܶ௔௫
∗  and Δ denote the maximum degree among the vertices of ௠ܶ௔௫

∗  then using Lemmas 5 
and 6, one can conclude that there is at most one branching vertex in ௠ܶ௔௫

∗  of degree greater 
than 3. Let ݀௩೔ = 3 for 1 ≤ ݅ ≤ ܾ − 1 and ݀௩೘ = Δ. Hence, ௠ܶ௔௫

∗ (݊,ܾ) is the collection of 
trees with maximum ܼܥଵ∗ with ݊ଷ = ܾ − 1, ݊ଵ = ݊ − ܾ also the fact ∑  ௜ ݅݊௜ = 2(݊ − 1) 
implies that Δ = ݊ − 2ܾ + 1. Now, we need to place the pendent vertices and the vertices 
in the set ଷܸ( ௠ܶ௔௫

∗ ) so that we may get the maximum tree ௠ܶ௔௫
∗ . For this purpose, we 

establish the following lemmas:  
 
Lemma 7. If ݊ଷ ≤ then every vertex of degree 3 in ௠ܶ௔௫ ,߂

∗  is adjacent to the vertex ݒ௠ of 
degree ߂.  

  
Proof. Suppose there exists a branching vertex ݒ௜ (1 ≤ ݅ ≤ ܾ − 1) non-adjacent to ݒ௠, and 
݊ଷ = ܾ − 1 ≤ Δ. So, there must be a pendent neighbor (say) ݓ of ݒ௠ in ௠ܶ௔௫

∗ . Let ܰ(ݒ௜) =
௝ݒ} , ,ଵݖ ଶ} (1ݖ ≤ ݆ ≤ ܾ − 1, ݆ ≠ ݅), where ݖଵ and ݖଶ are either pendent or branching vertices 
different from ݒ௠ and ݒ௜ is connected to ݒ௠ via ݀௩ೕ . Denote by ܶᇱ the tree obtained from 

௠ܶ௔௫
∗  as ܶᇱ = ௠ܶ௔௫

∗ − {௠ݒݓ ,௜ݒ௝ݒ} + ௠ݒ௜ݒ}   .{௝ݒݓ,

 
Figure 5: ௠ܶ௔௫

∗  and ܶᇱ. 
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Clearly, the newly obtained tree ܶᇱ belongs to ࣮∗

௡,௕ (see Figure 5) and 3 ≤ ܾ ≤ ௡ାଶ
ଷ

. It 
holds   
ଵ∗(ܶᇱ)ܥܼ            − )∗ଵܥܼ ௠ܶ௔௫

∗ ) = (2Δ݀௩೔ − Δ − ݀௩೔) + (2݀௩೔ − ݀௩೔ − 1) 
          −(2݀௩೔݀௩ೕ − ݀௩೔ − ݀௩ೕ)− (2Δ − Δ − 1) 

                                                      = 4(Δ − 3) > 0, 
which is a contradiction.                                                                                                 □  
 

Note that, Lemma 7 ensures that the maximum tree ௠ܶ௔௫
∗  for ܾ − 1 ≤ ݊ − 2ܾ + 1 

or 3 ≤ ܾ ≤ ௡ାଶ
ଷ

 must be ܤଵ∗ given in Figure 2. Now, we consider the case if ݊ଷ > Δ (i.e. 
௡ାଶ
ଷ

< ܾ ≤ ௡
ଶ
− 1), there is at least one vertex of degree 3 non-adjacent to ݒ௠. Besides, the 

vertex ݒ௠ has only branching neighbors, so we have the following result:  
 
Lemma 8. If a tree ܶ ∈ ࣮∗

௡,௕ contains a vertex ݑ of degree 3 with branching neighbors ݖ, 
with ݀௩ ,ݓ and ݒ ≥ 3,݀௭ = ݀௪ = 3 and ܰ(ݓ) = then a tree ܶᇱ ,{ଶݓ,ଵݓ,ݑ} = ܶ −
{ݓଵݓ,ݑݖ} + ,ݑଵݓ} can be obtained from ܶ(see Figure 8) such as ܶᇱ {ݓݖ ∈ ࣮∗

௡,௕, and 
Zܥଵ∗(ܶᇱ) =   .(ܶ)∗ଵܥܼ

 
Figure 6: The Trees ܶ and ܶᇱ. 

    
Proof. It is obvious that ܶᇱ ∈ ࣮∗

௡,௕. Also, it holds that   
ଵ∗(ܶᇱ)ܥܼ  − (ܶ)∗ଵܥܼ = (2݀௨݀௪భ − ݀௨ − ݀௪భ) + (2݀௭݀௪ − ݀௭ − ݀௪) 
                                        −(2݀௭݀௨ − ݀௭ − ݀௨)− (2݀௪݀௪భ − ݀௪ − ݀௪భ) = 0. 

                                                                                                                                                □ 
Consequently, using Lemmas 5-8, one can conclude that in order to maximize ܼܥଵ∗, 

we place the vertices of degree 3 in the neighbors of ݒ௠ such that there is no pendent 
neighbor of ݒ௠, then the remaining vertices of degree 3 can be placed arbitrarily in the 
neighbor of any pendent vertex adjacent to a vertex of degree 3.  
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Figure 7: The base ܤଶ∗ of a tree with maximum ܼܥଵ∗ for ௡ାଶ
ଷ

< ܾ ≤ ௡
ଶ
− 1. 

 
Hence, ௠ܶ௔௫

∗  can be constructed, by starting from the tree ܤଶ∗ given in Figure 7, and then 
inserting the remaining vertices of degree 3 arbitrarily in the neighbor of any pendent 
vertex adjacent to a vertex of degree 3. So, the next result follows:  
 
Proof of Theorem 2. Using Lemmas 5-7 one can conclude that the maximum tree ௠ܶ௔௫

∗ ≅
ଵ∗ for 2ܤ ≤ ܾ ≤ ௡ାଶ

ଷ
 given in Figure 2 which implies that ݔଵ,ଷ = 2݊ଷ = 2ܾ − ଵ,୼ݔ ,2 = Δ −

݊ଷ = ݊ − 3ܾ + ଷ,୼ݔ ,2 = ݊ଷ = ܾ − 1 and ݔଷ,ଷ = 0. Hence, ܼܥଵ∗( ௠ܶ௔௫
∗ ) = ݊ଶ − 3݊ −

4ܾଶ + 12ܾ − 6 for 3 ≤ ܾ ≤ ௡ାଶ
ଷ

. 

Now, using the results in Lemmas 5-8 one can construct ௠ܶ௔௫
∗  for ௡ାଶ

ଷ
< ܾ ≤ ௡

ଶ
− 1 

by starting from the tree ܤଶ∗ given in Figure 7 and then inserting the remaining vertices of 
degree 3 arbitrarily in the neighbor of any pendent vertex adjacent to a vertex of degree 3 
which implies that ௠ܶ௔௫

∗ ∈ ଵܶ
∗(݊,ܾ) and ݔଵ,ଷ = ݊ଵ = ݊ − ଵ,୼ݔ ,ܾ = ଷ,୼ݔ ,0 = Δ = ݊ − 2ܾ +

1 and ݔଷ,ଷ = ݊ଷ − Δ = 3ܾ − ݊ − 2. Hence, ܼܥଵ∗( ௠ܶ௔௫
∗ ) = 5݊ଶ + 20ܾଶ − 20ܾ݊ − 3݊ +

20ܾ − 22 for ௡ାଶ
ଷ

< ܾ ≤ ௡
ଶ
− 1 which completes the proof.                                                  □ 
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