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1. INTRODUCTION

In this paper, we only consider the simple undirected and connected graphs. Let G = (V,E)
be a graph with vertex set V(G) and edge set E(G). For u € V(G), Ng;(u) and dg;(u)
denote the neighbor set and the degree of vertex u in G, respectively, where dg;(u) =
|N;(w)|. For convenience, we usually simplify as N, and d,,. The distance between any
two vertices of u and v is the length of a shortest path from u to v in the graph G, denoted
by d;(u,v) ord(u,v). Ifu € V(G) and G — u is not connected, then u is said to be a cut-
vertex of G.

A cactus graph is a connected graph in which no edge lies in more than one cycle,
for short, a cactus graph is also called a cactus. In fact, a graph G is a cactus if and only if
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each block of G is either an edge or a cycle. A cycle of length k is usuall called a k-
polygon. If each block of a cactus G is a k-polygon, then G is called a k-polygonal cactus.
For convenience, a k-polygon is usually referred to as a polygon.

Let G, denote the set of all k-polygon cacti with n > 3 blocks. Let G € G, and
C a k-polygon of G. If C contains exactly one cut-vertex, then C is called a terminal
polygon; Otherwise, C is called a non-terminal polygon, i.e., a non-terminal polygon is a
polygon contains at least two cut vertices.

A cactus chain is a special k-polygonal cactus such that each polygon has at most
two cut-vertices, and each cut-vertex is shared by exactly two polygons. In fact, A k-
polygonal cactus is a cactus chain if and only if the smallest connected subgraph which
contains all cut-vertices is a path. If G is a cactus chain, then the number of polygons is
called the length of G. Furthermore, if G is a cactus chain and the distance between two cut-

vertices of each non-terminal polygon is EJ then G is called a linear cactus chain. By the

definition, the linear cactus chain with n polygons is unique and denoted by L, .

A star-like cactus is the special k-polygonal cactus with n polygons such that all
polygons have a common vertex, i.e., all polygons are terminal polygons. By the definition,
it is unique and denoted by W, ., and W, ; contains exactly one cut-vertex with degree 2n,
and the degree of all the other vertices is 2.

In [17], Wang et al. gave the first three smallest Kirchhoff indices among all cacti
possessing n vertices and t cycles. In [21], Ye et al. determined the minimum value and
maximum values of general sum-connectivity index, general Platt index and second Zagreb
index, respectively, among the class of k-polygonal cacti with n polygons. In this paper, we
will give the maximum and minimum values of the Wiener index and the Kirchhoff index
among all k-polygon cacti with n > 3 blocks and characterize the corresponding extremal
graphs as well.

The Wiener index W (G) of a graph G is based on the distances between vertex
pairs, first proposed by H. Wiener [18] in 1947, and defined as the sum of the distances of
all vertex pairs, i.e, W(G) = Xgncv(c)de (u,v). The Wiener index is used to describe
the molecular structure, which was originally applied in the field of chemistry, and now is
also widely used in social relationship measurement and social network, see [5, 6, 8, 14, 15,
16].

In 1993, Klein and Randi¢ [11] introduced another distance function, the resistance
distance, on the basis of electrical network theory. Inserting a unit resistance between each
edge in G, the resistance distance between vertices u and v of G is the effective resistance
between vertices u and v, denoted by r; (u, v) or r;,,, . Based on the resistance distance, the
Kirchhoff index Kf(G) of a graph G is defined as the sum of the resistance distances of all
vertex pairs, i.e., Kf(G) = Xuuievc) e (w,v). For a vertex u € V (G), let Kf,,(G) =
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Yucv(e)Te (W, v), then Kf(G) = %ZuEV(G)Kfu (G). As a useful structure-descriptor, the
Kirchhoff index was well studied in [11, 13]. Much work has been done to compute the
Kirchhoff index of some classes of graphs, such as complete graphs, cycles, distance
transitive graphs, circulant graphs, linear hexagonal chains, unicyclic graphs and so on, see
[1,2,34,7,9 10,12, 17,19, 20, 22, 23].

2. THE EXTREMAL GRAPH WITH THE MAXIMUM INDEX

In this section, we will determine the k-polygonal cactus with the maximum Wiener index
and the maximum Kirchhoff index among all k-polygon cacti with n blocks for k > 3 and
n > 3.

Firstly, we introduce some lemmas.

Lemma 1. [11] Let x be a cut vertex of a connected graph G and a, b be vertices occurring
in different components of G — x. Then r;(a, b) = r5(a, x) + 15 (x, b).

Lemma 2. [7, 17] Let G, and G, be connected graphs. x; € V(G;) and x, € V(G,). IfG is
obtained by identifying x; with x, , then Kf(G) = Kf(G,) + Kf(G,) +n,Kf,,(G,) +
n K fr, (G1), where Kf, (G)) = Zyevay 7o, (61 y), andm; = [V(G)| — Lfori = 1.2

Lemma 3. If G € G, with the maximum Wiener index or the maximum Kirchhoff index,
wherek > 3,n > 3, and C is a k-polygon in G with exactly two cut-vertices, then the

distance between two cut-vertices of C is E J

'K ) L N J
Wi Wia Wi — Wi Wia
L N
Wz LN N ] Wz
G G’

Figure 1: The graphs Gand G'.

Proof. Let C = wyw, ... w; ... ww; be a non-terminal polygon of G € G, , w; and w; its
two cut-vertices. G, and G, are the components of G — E(C) containing w, and w; ,
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respectively. If 2 <i < EJ , then we only need to show that W(G') > W(G) and
Kf(G") > Kf(G), where G' = G —w;u —w; v+ wlgjﬂu + wlgjﬂv, see Figure 1.
2 2

w( ") -w(G) = Zx,yEV(G)[dG' (x,y) —dg(x,¥)]
= Zx,yEVl[dG' (x, y) - dG(x’y)] + Zx,yEVZ[dG' (x’y) - dG(xa }’)]
+ ZyEVl',xEVZ'[dG' (x,y) — dg(x, y)]
= ZyEVl',xEVZ'[dG' (x’y) —dg (x’ y)]
= ZyEVl',xEV(GZ)[dG' (x,y) —dg(x,¥)]

= Syevtxereoller (xwie ., )+ dor (Wi o) + dorwa 0)
—(dg(x,w;) + dg(wi, wy) + dg(wy, y))]
= Zerl',xEV(GZ)[dG' <WEJ+1, W1) —dg(w;, wy)]

= Zerl',xEV(GZ) dg <WEJ+1, Wi) >0,
e, W(G" > W(G).

Next, we consider the Kirchhoff index. Let H, and H,' be the induced subgraphs by
V(C)uV(G,) in G and G', respectively, n; = |V;| —1 and n, = [V,| — 1. By Lemma 2
and Lemma 1, we have
Kf(G") — Kf(G) = [Kf(Gy) + Kf(H,") +n,Kfy, (Hy') + nyKf, (G1)]

— [Kf(Gy) + Kf (H;) + nyKf,,, (Hy) + n,Kf,,, (G1)]
=m[Kfw,(Hy') — Kfy, (H)]

=1y Lxev(e)l(re’ <x,Wl§J+1) +re <WEJ+1, W1))
—(rs (e, wy) + (Wi, wy))]

=ng erv(az)[ra’ <WEJ+1,W1) — 1g (W, wy)]

=N Yxev(cy) T’ <WEJ+1, Wi) >0,
ie., Kf(G") > Kf(G).
U]
Let G EGu, bk =3 andn = 3, and let C;,Cy, ... ,C; be s(s = 1) cycles of
length kin G, V; = V(C;) UV(C,) U---UV(Cs), u € C;is a cut vertex of G but not a cut
vertex of G[V;]. If G[V;] is a cactus chain and each k-polygon of {C; ,C,, ..., C} has at
most two cut-vertices in G, C, is a terminal polygon of G, the degree of each vertex of
V; — {u} is at most four in G, then G[V,] is called a pendent cactus chain of length s of G,
and C,_; is called a neighbor polygon of the pendent cactus chain [21].
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From the definition, if G[V/;] is a pendent cactus chain of length s > 2, then for 1 <
I <s—1land 2 <j<s-1, each C; contains exactly two cut-vertices in G, and the degree of
every cut-vertex of C; is equal to four in G.

Let GEG,, , k =3 and n > 3 and let C;,Cy, ,Coye bE s+HE(s 21t >
1) cycles in G such that the induced subgraphs G[V(C;) UV (C,) uU-—-UV(C,)] and
G[V(Cs41) UV (Csyz) U-+-U V(Cs, )] are two pendent linear cactus chains of length s and t

respectively, i.e., the distance between two cut-vertices in the each cycle C; is E J

() fuy e V(C) NV (Cs41) and dg (uy) = 6, then u, is called a special vertex of G;
(i) If C, is a k-polygon of G with at least three cut-vertices in G such that V' (C;) n
V(Cy) = vy and V(Cs41) NV (Cy) = wy With d; (wy)=d;(vy)= 4, then C, is called
a special polygon of G.

The following result shows that the k-polygon cactus with the maximum Wiener
index or the maximum Kirchhoff index has no special vertices.

Lemma 4. If G € G, with the maximum Wiener index or the maximum Kirchhoff index,
then G has no special vertices.

\
u
U[k/2]+1
Uk

Figure 2: The graph G in Lemma 4.

Proof. Let G € G, with the maximum Wiener index or the maximum Kirchhoff index. By
Lemma 3, all pendent chains in G are linear. If G has a special vertex u,, then there are
s+t(s=1t=1)cyclesC,,Cy,,Cssyr InGsuch that the induced subgraphs G[V(C;) U
V(Cy) U---uV(C)] and G[V(Csyq) UV (Csip) U--UV(Ceyp)] are two pendent linear
cactus chains of length s and t, respectively, and u, € V(C;) N V(Cs41) and dg (uy) = 6,
see Figure 2, i.e., G is obtained from G; and G, by identifying u, € V(G,) with w; €
V(Cs41), Where G, = G[V(Cg41) UV (Csy2) U-U V(Csyp)] is the linear chain Ly, g.¢
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Let' =G — UgWy, — UgWy, + ulEJ_HWl + ulEJ_l_ka , then G’ € Gn,k- Note that W(G) =
2 2

W(Gy) + W(G2) + Lxev, yev, do(x,¥), W(G") = W(Gy) + W(G2) + Xrev, yev, de' (X, ¥),
where V; = V(G,) —{uy} and V; =V(G)—-V(G,) , we have W(G')-W(G)=
ervl,yevz [d;(x,y) —dg(x,y)] > 0.Similarly,

Kf(G") - Kf(G) = ZxEVl,yEVZ[rG'(x’ y) —r6(x,¥)] > 0.

So, W(G') >WwW(G) and Kf(G") > Kf(G), a contradiction to G with the maximum
Wiener index or the maximum Kirchhoff index. O

Now, we will show that the k-polygon cactus with the maximum Wiener index or
the maximum Kirchhoff index also has no special polygons.

Lemma 5. If G € G, with the maximum Wiener index or the maximum Kirchhoff index,
then G has no special polygon.

Proof. Let G € G, with the maximum Wiener index or the maximum Kirchhoff index. By
Lemmas 3 and 4, all pendent chains in G are linear and G has no special vertices.

If G has a special polygon C, , then there are s + t(s = 1,t > 1) cyclesC; ,C,, ...,
Cs+¢ In G such that the induced subgraphs L, s = G[V(C;) U V(C;) U---U V(Cs)] and
Lyt = G[V(Cs41) UV (Cs42) U-UV(Csye)] are two pendent linear cactus chains of
length s and t, respectively, v, € V(C;) NV (Cy), wy € V(Cs:1) NV (Cy) and dg(wy) =
dg(vo)= 4, ie., G is obtained from C, UG, - UG, L, and L, by identifying v, €
V(Cy) with v; € V(C;) and identifying w, € V(C,) with w; € V(Cs;1), Where C; =
V1V, ... UV With two cut-vertices v; and vlg J+ 10 Csi1 = wiwy o wyewy with two cut-

vertices w; and WHH and Cy U G; -~ U G, is obtained by attaching k-polygons G; (1 <
2
i < r)to cut-vertices v; of C, , see Figure 3. Let G' = G — wow, — wowy, + ulgjﬂw2 +
2
ulEJ_I_ka where u; and umﬂ are two cut-vertices of C; = uju, - upuy in Gy. Then
2 2

Go € Guye . and W(G)= Y. W(G), + W(H) + Treryer, de(x.y) W(G) =
D W(G) + W (Lnsier1) + Zxers yer, der (x,¥), where H is the induced subgraph of G
by V(C;) UV(C;) U-UV(Csi¢), Ly s4e4+1 IS the linear chain consisted of Co U C; +++ U Cgy¢
inGy,V,=V(H)—Rand V, =V(G) —V(H) and R = {wy,v,,v;,,Vs} IS the set of
cut-vertices of Cy in G . Note that W(H) < W(Lys4¢41) Since dg(vo, wo) SS, and
Yxevyyev, A (X,Y) — ey, yen, dor(x,y) = ervl,yevz’[da(x, y) —dg(x,y)], where
V; =V (Cs41 U UCgyr) — {wy}. Therefore,
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ZxEVl,yEVZ'[dG (x’ y) - dG'(x’ y)]
= Yxev, yev[(dg (e, wo)+dg(wo,¥)) — (dg- <x’ul§J+1 ) +dg <UEJ+1,}’))]

= erVl,yEVZI[dG (x, Wo) - dG' <x, ulEJ_I_l)] > 0.

So, W(G) < W(G"). Similarly, by Lemmas 1 and 2, we can get Kf(G) < Kf(G'), a
contradiction to G with the maximum Wiener index or the maximum Kirchhoff index. [

e
it @

o aEyos
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Figure 3: The graph G and Go in Lemma 5.

Theorem 6. Let€ G, ,k = 3andn = 3. Then
wG) < (D) -2 |£] + Gnk + (k- 1)(n? — n)) <]

—1)2
KFG) < (1) 22 ][4+ 5 (nk + 2k — 1) (02 — ) (k? - 1),
with equality if and only if G = L, is a linear chain with n k-polygons.

Proof. Let G € G, with the maximum Wiener index or the maximum Kirchhoff index. By
Lemmas 3, 4 and 5, we know that G is the linear chain L,, ;. So, we only need to compute
W (L) and Kf (Ly ). Let D, (G) = Yyev(e)de(x,u), If Cis a k-polygon and u € V(C),

then a = D,(6) = |~ | and w(C) = 2 ka.

LetL,, = C; UC; -+ UC, consist of n k-polygons C;, C;, -, Cy, u; is the common
cut-vertex of C; and C; 4, the distance b = d(u; ,u;41) = EJ l1<i<n.

W(Lnsre) = W (Lni) + W(Cnsq) + (k = 1)Dy (Lyse) + (k — 1)nDy, (Cris)

=W (Lnx)+ %ka + (k—1)D, (Lny) + (k—Dna

=W(Lpx) + (k —1)Dy (Lny) + Ek + (k — 1)n] a.

Now, Dy (Lix)=a Dy,(Lyx) =a+a+(k—1)b=2a+(k—1)b, D, (Lsy) =
2a+(k—-1)b+a+2(k—1)b=3a+3(k—1)b, and we have by induction that
Dy, (Lyx) =na + (5)(k — 1)b. So,
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W(Lnsri) = W(Lnie) + 2k = 1)%b + 2k + 20k — 1)na
= W(Lp-1i) + [("57) + )]k = 2)%b
+ 2+ 20k = 1)(n— 1) + 2k + 2(k — Dn]
= W(Ly) + Zn_ (1) (k - 1)%b +Zr'l_ Lk +2(k - 1)ila

n

— %ka + (n;—l)(k _ 1)2b + Z'_ [%k + Z(k — 1)i]a

= (T - 2 |E ] + Gk(n +1) + (k- Dn(n + 1)) £
Similarly, let Kf,(G) = Yxev)Tc(x,u). If C is a k-polygon and u € V (C), then

@ = Kf(C) =51 and KF(O)=lka' = Let b =1, (ue) =
LE|Ea =i <n. Then Kf (Lusase) = Kf(Lnk) + KfCaar) + (k= D Kf o (Lnic) +
(k=) nKf y, (Cors) = Kf(Lui) + U = DKS o, (Luic) + |2k + 20 — D)n|a’,

Kf u,(Lyx) =na’ + ())(k—1)b"  and  Kf(G) = ("3')(k—1)p' + (%k(n +1)+

(k — Dn(n + 1)) a= (DL E [+ L (k(n+ 1) + 2(k — Dnn + D) (k2 - 1),

Hence the result. 0

Theorem 6 gives the maximum values of Wiener index and Kirchhoff index for all
k-polygonal cacti with n cycles and characterizes the extremal graphs. For k = 6, we can
get the maximum values of Wiener index and Kirchhoff index for all spiro hexagonal
chains with n hexagons.

Corollary 7. [3, 4, 9] Among all spiro hexagonal chains with n hexagons, we have

(i) the unique spiro hexagonal chain with the maximum Wiener index is the spiro para-

chain P,, and W (P,) = 22—5n3 + 12—5n2 + 7n;

(i) the unique spiro hexagonal chain with the maximum Kirchhoff index is the spiro

H 25 125 5
para-chain B, , and Kf(B,) = 7n3 + EnZ +=n.

3. THE EXTREMAL GRAPH WITH THE MINIMUM INDEX

In this section, we determine the minimum values of Wiener index and Kirchhoff index for
all k -polygonal cacti with n cycles and characterizes the extremal graphs and the
corresponding extremal graphs.
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Theorem 8. LetG € G, k = 3and n > 3. Then
2
W(G) 2 in(k +2(n - 1)(k - 1)) ||
Kf(6) = —n(k +2(n—1)(k — 1))(k? — 1),
with equality if and only if G = W, is a star-like cactus with n k-polygons.

Proof. Let G € G, be a cactus with the minimum Wiener index or the minimum
Kirchhoff index. We first show that G is a star-like cactus, i.e., each polygon in G has only
one cut-vertex. If there is a k-polygon C, in G such that C, has at least two cut-vertices,
then we only need to show that there is Cy € G, such that W(G,) < W(G) and Kf(Gy) <
Kf(G). Let vy,v,,.. ,v, be all cut-vertices in Cy, t = 2, and G; the components of
G — E(Cy) containing v; ,i = 1,2,...,t, i.e, G is obtained by attaching G; to the cut-vertex
v; of G,. Now, we take G, to be the cactus obtained by attaching all G;(i = 1,2, ..., t) to the
same vertex v, of C, , see Figure 4, then W(G)=XI_,W(G,)+W(Cy) +
lei<jst ZxEVi,yEVj de(x,y) + Xf, ervi,yevo dg(x,y), where Vo =V(Co) — {vy, ... , v},
Vv, = VG) —{v} , 1<i<t , and W(G) = X, W) + W(,) +
Dicicj<t ZxEVi,yEV]- dgr(x,y) + Xy Yxev,yev, dgr(x,y). Note that ¥i_, ZxEVi,yEVO dgr(x,y)
= Zf=1 ervi,yevo dg(x,y) and
lei<jst2xevi,yevj de(x,y) < Z1si<jst2xevi,yevj dg(x,y).
So, we have W(G") < W (G). Similarly, by Lemmas 1 and 2, we can get Kf(G") < Kf(G).
Next, we compute W (W, ,) and Kf (W, x). Let W, ,, = C; U C; --- U C,, consist of n
k-polygons Cy, C5,++, Cy,, v, is the common cut-vertex of all C; (1 < i < t). Then
W(Wn+1,k) = W(Wn,k) + W(Cn+1) + (k - 1)Dv0(Wn,k) + (k - 1)an0 (Cn+1)

= W(Wpie) +5ka + (k = 1)Dy,(Wy ) + (k — 1)na

= W(Wn'k) + %ka +(k—Dna+ (k—1)na

= W(Wyy) + Ik +2(k — 1)ila

= ~ka+ X, [2k +2(k — 1)ila

=1+ D)k +2nk —20) [< |
and
Kf(Wn+1,k) = Kf(Wn,k) + Kf(Cn+1) + (k - 1)KﬁJ0 (Wn,k) + (k - 1)anv0 (Cn+1)
=Kf(Wy,) + %ka’ + (k—1)na' + (k — 1)na’
= Kf(Wyi) + 20, |3k + 20k - )i @
= ~ka' + 1,2k +2(k — 1)i]a’
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= %(n +1)(k + 2nk — 2n)(k? — 1).

Theorem 8 gives the minimum values of Wiener index and Kirchhoff index for all
k-polygonal cacti with n cycles and characterizes the extremal graphs.

0
Hedy — ‘%6

Figure 4: The graphs G and G’ in Theorem 8.
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