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1.  INTRODUCTION 

Graph Theory is an important area of mathematics with many applications in 
computer science, engineering, social sciences, industry genetics, chemistry, 
industry, and business. Hypergraphs are a generalization of graphs, where an edge 
may contain more than two vertices and have found applications in social network 
analysis, image processing, machine learning. 
 In the k-uniform hypergraph, the number of vertices in every edge exactly 
is equal to k. But in non-uniform hypergraphs, there isn't such restriction and, then 
it allows the non-uniform hypergraph to support a more complex data structure [1], 
[46]. It appears in various domains of computer science as satisfiability 
problems and data analysis. 
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 The spectral theory of uniform hypergraphs as determining several kinds of 
eigenvalues and eigenvectors of their associated tensors, namely adjacency tensor, 
Laplacian tensor, and signless Laplacian tensor, has studied in recent years, 
extremely and, in this respect, we have so many theorems. In 2005 eigenvalues and 
eigenvectors of a real tensor are defined in [28] and [35]. Qi in [35] introduced 
some basic definitions of spectral theory of supersymmetric real tensor. Later in 
[36], the spectral theory of uniform hypergraphs has been studied. Recently a 
number of papers appeared in different aspects contains, spectral uniform 
hypergraph theory [9, 10, 15, 22, 23, 26, 31, 33, 39, 40, 45, 53], eigenvalues [17, 
25, 32, 41, 42, 43, 44, 47, 51], connectivity [16, 27], Laplacian tensor [4, 18, 20, 
34, 36, 52], structured tensors related [7, 11], special uniform hypergraphs [5, 19, 
21, 37, 48], uniform hypergraph properties [6, 12, 14, 29, 30]. 
 Despite a lot of research in the spectral theory of uniform hypergraphs, 
there aren’t so many scientific works in the spectral theory of non-uniform 
hypergraphs. Banerjee and others in 2016 [3] introduced the adjacency tensor of a 
non-uniform hypergraph and presented some of its properties. Then Banerjee and 
Char in 2017 [2] studied the non-uniform directed hypergraph. The spectral 
properties of non-uniform hypergraph are also analyzed in [24], [49], [50]. 
 In this paper, we study the non-uniform hypergraph more precisely and 
then analyze some of its spectral properties. The significant point in the non-
uniform hypergraph that there is not in uniformity, considering all permutations 
with the repetition of vertices in edge e. This point makes some theorems about 
non-uniform hypergraphs remain unproven. We try to compare the spectral 
properties of the non-uniform hypergraph with those of the uniform hypergraphs 
and, we will see that they haven't similar properties. 
 The rest of this paper is as follows: Some basic definitions of tensors and 
their H-eigenvalues are presented in the next section. In section 3 we analyze non-
uniform hypergraphs precisely and propose some theorems about them and, then in 
section 4 the adjacency matrix of a non-uniform hypergraph is introduced and, we 
discuss some of its properties. Section 4 is concerning the comparing spectral 
properties of the uniform hypergraph and the non-uniform hypergraph and, finally, 
section 5 is the conclusion. 
 
2. PRELIMINARIES 

In this section we give some basic definitions of tensors and their eigenvalues. In 
this paper we only consider real tensors. A real tensor ࣮ =  of order k and (భ⋯ೖݐ)
dimension n, for integers ݇ ≥3 and ݊ ≥2, is a multi-dimensional array with entries 
భ⋯ೖݐ భ⋯ೖ such thatݐ ∈ ℝ for all ݅ ∈ [݊]: = {1,2,⋯ , ݊} and ݆ ∈ [݇], [35]. 
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Definition 2.1 [38]. Let ࣮ be an order ݇ and ݊-dimensional tensor, and let ܲ and 
ܳ are both matrices. Then ࣭ = ࣮ܲܳ is an order ݇ and ݊-dimensional tensor 
whose ݏభ⋯ೖ  entry is ݏభ⋯ೖ = ∑  

భ,⋯,ೖୀଵ మమݍభభభ⋯ೖݐ  .ೖೖݍ⋯
 

Now let ܠ = ⋯,ଵݔ) ்(ݔ, ∈ ℂ, the product ࣮ܠ is a vector in ℂ whose ݅th 
component as the following:   

(ܠ࣮) = ∑  
మ,⋯,ೖୀଵ   ೖݔ⋯మݔమ⋯ೖݐ

The identity tensor of order k and dimension n, ℐ = (݅భ⋯ೖ), is defined as 
݅భ⋯ೖ = 1 if and only if ݅ଵ = ⋯ = ݅ ∈ [݊] and zero otherwise.  
 

Definition 2.2 [8, 35]. Let ࣮ be an order k and n-dimensional tensor. Then a 
number ߣ ∈ ℂ is called an eigenvalue of the tensor ࣮ if the polynomial system 
ℐߣ) − [ିଵ]࢞(࣮ = 0 has a nonzero solution ࢞ ∈ ℂ, where 
[ିଵ]࢞ = ⋯,ଵିଵݔ) ,  ࣮  is called an eigenvector of ࢞ ିଵ)். In this caseݔ
corresponding to ߣ.  
 

Now if there exists a real eigenvector corresponding to ߣ, then ߣ is called 
an H-eigenvalue of ࣮ [35]. The set of all eigenvalues of ࣮, denoted by ܵܿ݁(࣮), is 
called the spectrum of ࣮. The H-spectrum of ࣮, denoted by ܿ݁ݏܪ(࣮), is defined 
as  ܿ݁ݏܪ(࣮) = ߣ} ∈ ℝ|ߣ  is an H − eigenvalue of ࣮}. 

The spectral radius of ࣮ is defined as the maximal absolute value of the 
eigenvalues of  ࣮ and denoted by ߩ(࣮).  
 

Definition 2.3 [38]. Let ࣮ and ࣭ be two order k dimension n tensors. ࣮ and ࣭ are 
called diagonal similar if there exists a nonsingular diagonal matrix ܦ of order n 
such that  ࣭ = ିܦ

 
(ିଵ)࣮ܦ.  

 

The notation of weakly irreducible nonnegative tensors was introduced in 
[13].  
 

Definition 2.4.  Let ࣮ =  .be a k order n-dimensional nonnegative tensor (భ⋯ೖݐ)
We associate a directed graph ܩ(࣮) = ܸ with ࣮, where ((࣮)ܧ,ܸ) = [݊] ,and a 
directed edge (݅, ݆) ∈ ⋯,if there exists {݅ଶ (࣮)ܧ , ݅} ∈ [݊] such that ݆ ∈ {݅ଶ,⋯ , ݅} 
and ݐమ…ೖ > 0. Now ࣮ is called weakly irreducible if ܩ(࣮) is strongly connected.  
 
3.  THE NON−UNIFORM HYPERGRAPH AND ITS TENSORS 

In this section first, we present some basic definitions of non-uniform hypergraphs 
and introduce its corresponding tensors by definitions in [3].  
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Definition 3.1. A non-uniform hypergraph ℋ is a pair ℋ =  where ,(ܧ,ܸ)
ܸ = {1,2,⋯ ,݊} is the set of vertices and ܧ = {݁ଵ, ݁ଶ,⋯ , ݁} is the set of edges 
that every edge is a nontrivial subset of  ܸ.  
 

Note that in the ݇-uniform hypergraph |݁௧| = ݇ for ݐ = 1,⋯ ,݉, but in the 
non-uniform hypergraph we don’t have this restriction, then it is a useful tool for 
storing data.  The degree of the vertex ݅ ∈ ܸ is ݀ = |{݁ ∈ ݅  |  ܧ ∈ ݁}|. Let ݅, ݆ be 
two different vertices. The set of all edges containing ݅ is denoted by ܧ, and ܧ  is 
defined as follows:  

ܧ = {݁ ∈ ,݅|ܧ ݆ ∈ ݁}. 
We say ݅, ݆ are adjacent, denoted by ݅ ↔ ݆, if there exists an edge that 

contains them and ݅, ݆ are connected if there exists a sequence of edges ݁భ ,⋯ , ݁ 
such that ݅ ∈ ݁భ   , ݆ ∈ ݁ and ݁ ∩ ݁శభ ≠ ߶ for all ݐ ∈ {1,⋯ , − 1}. The non-
uniform hypergraph ℋ is connected if every pair of different vertices of ℋ is 
connected. Let ݇ = max∈ா|݁| be the maximum cardinality of edges, m.c(ℋ), in 
this paper, we denote every non-uniform hypergraph ℋ by non-uniform ݇-
hypergraph if m.c(ℋ)=݇. 
 

Definition 3.2. Let ℋ =  be a non-uniform ݇-hypergraph and ݇ be even. ℋ (ܧ,ܸ)
is called odd-bipartite if it is trivial (i.e. ܧ = ߶ ) or, there is a nontrivial subset of 
ܸ as ଵܸ such that every edge in ܧ contains an exactly odd number of vertices in V1. 
 

Definition 3.3. Let ݁ = {݈ଵ, ݈ଶ,⋯ , ݈௦} be a set of ݏ distinct objects and ݇ ≥  We .ݏ
denote the number of all permutations with repetition of ݈ଵ, ݈ଶ,⋯ , ݈௦ of length ݇ 
with at least once for each element of the set ݁ by ߙ and we have:  

ߙ = ∑  భ,మ,⋯,ೞஹଵ
∑  ୀ

!
భ!మ!⋯ೞ!

  

 

It’s trivial that if ݏ = ݇, then ߙ = ݇!. 
 

Definition 3.4. Let ݁ = {݅, ݈ଶ,⋯ , ݈௦} be a set of ݏ distinct objects and ݇ ≥  We .ݏ
denote the number of all permutations with repetition of ݅, ݈ଶ,⋯ , ݈௦ of length ݇ with 
at least once for each element of the set ݁, in which ݅ is in first place, by ߙ(݅).  
 

Definition 3.5. Let ݁ = {݅, ݆, ݈ଷ,⋯ , ݈௦} be a set of ݏ distinct objects and ݇ ≥  We .ݏ
denote the number of all permutations with repetition of ݅, ݆, ݈ଷ,⋯ , ݈௦ of length ݇ 
with at least once for each element of the set ݁ in which ݅ is in the first place and ݆ 
is in the second place, by ߙ(݅, ݆).  
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In the following theorems, we explain some essential concepts of non-
uniform hypergraphs by ߙ(݅) and ߙ(݅, ݆).  
 
Theorem 1.  Let ℋ = ݅ be a non-uniform ݇-hypergraph and (ܧ,ܸ) ∈ ܸ. Suppose 
that ݁ = {݅, ݈ଶ,⋯ , ݈௦} ∈   : then we have thatܧ

(݅)ߙ = ∑  భ,మ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ!

= ఈೖ

௦
  

Proof. Let ݁ = {݅, ݈ଶ,⋯ , ݈௦} ∈ , we want to determine the number of ܽమ⋯ೖܧ  
corresponding to the ݁. So, first, we should transform these ݏ objects into ݇ objects 
by creating copies of them, and then determine the number of permutations with 
repetition of these ݇ objects. Now suppose that create ݇ objects in which there are 
݇ଵ copies of ݅, ݇ଶ copies of ݈ଶ, ⋯ and ݇௦ copies of ݈௦ such that ݇௧ ≥ 1 for ݐ =
1,⋯ ,  The number of permutations with repetition of these ݇ objects in which ݅ is .ݏ

in the first place is equal to  (ିଵ)!
(భିଵ)!మ!⋯ೞ!

  and thus the number of all permutations 

with repetition of ݅, ݈ଶ,⋯ , ݈௦ in the form of ݅, ݅ଶ,⋯ , ݅ is  

∑  భ,మ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ!

                                  (3.1) 

Now we show that (3.1) equals to ߙ/ݏ. Let ܣ be the set of all 
permutations with repetition of ݅, ݈ଶ,⋯ , ݈௦ of the form ݅ଵ, ݅ଶ,⋯ , ݅ , we have 
|ܣ| = ⋯,ଶܣ,ଵܣ into ܣ . Now we partitionߙ ଵܣ  ௦ in whichܣ, = {ܱ ∈ ܱ | ܣ =
݅, ݅ଶ,⋯ , ݅} and ܣ௧ = {ܱ ∈ ܱ | ܣ = ݈௧, ݅ଶ,⋯ , ݅} for ݐ = 2,3,⋯ ,  It is trivial that .ݏ
ܿ: = |ଵܣ| = |ଶܣ| = ⋯ =   :௦|. Now we haveܣ|

ߙ = |ܣ| = ∑  ௦
௧ୀଵ |௧ܣ| = ⇒  ܿݏ   ܿ = ఈೖ

௦
  

On the other hand,  ߙ(݅) =   : ଵ|, then we haveܣ|

(݅)ߙ = ∑  భ,మ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ!

= ఈೖ

௦
                                      

  
Similar to Theorem 1, we have the following Theorem.  
 

Theorem 2. Let ℋ = ,݅ be a non-uniform ݇-hypergraph and (ܧ,ܸ) ݆ ∈ ܸ. Suppose 
that ݁ = {݅, ݆, ݈ଷ,⋯ , ݈௦} ∈  , then the number of permutations with repetition ofܧ
݅, ݆, ݈ଷ,⋯ , ݈௦ of the form ݅, ݆, ݅ଷ,⋯ , ݅  with at least once for each element of the set 
{݅, ݆, ݈ଷ,⋯ , ݈௦} is:  

,݅)ߙ ݆) = ∑  భ,మ ,⋯,ೞஹଵ
∑  ୀ

(ିଶ)!
(భିଵ)!(మିଵ)!⋯ೞ!

= ఈೖ

௦(௦ିଵ)
− ఈೖషభ

௦(௦ିଵ)
  

Proof. By a similar proof as Theorem 1, we have that:  
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,݅)ߙ ݆) = ∑  భ,మ,⋯,ೞஹଵ
∑  ୀ

(ିଶ)!
(భିଵ)!(మିଵ)!⋯ೞ!

.  

Now we show that ߙ(݅, ݆) = ఈೖ

௦(௦ିଵ)
− ఈೖషభ

௦(௦ିଵ)
. Suppose that ܣ is the set of 

all permutations with repetition of ݅, ݆, ݈ଷ,⋯ , ݈௦ of the form ݅, ݅ଶ, ݅ଷ,⋯ , ݅ with at 
least once for each element of the set {݅, ݆, ݈ଷ,⋯ , ݈௦}. By Theorem(1) we have 

|ܣ| = ఈೖ

௦
. Now we partition |ܣ| into ܣଵ,ܣଶ,⋯ ଵܣ ௦ whereܣ, = {ܱ ∈ ܱ|ܣ =

݅, ݅, ݅ଷ,⋯ , ݅} , ܣଶ = {ܱ ∈ ܱ|ܣ = ݅, ݆, ݅ଷ,⋯ , ݅} and ܣ௧ = {ܱ ∈ ܱ|ܣ =
݅, ݈௧, ݅ଶ,⋯ , ݅} for ݐ = 3,⋯ , :ܿ It is trivial that .ݏ = |ଶܣ| = |ଷܣ| = ⋯ =  ௦|. It isܣ|
easy to see that the number of all permutations with repetition of ݅, ݆, ݈ଷ,⋯ , ݈௦ with 
at least once for each element of the set {݅, ݆, ݈ଷ,⋯ , ݈௦} in which the first and second 
objects are identical, is ߙିଵ = ∑  భ ,మ,⋯,ೞஹଵ

∑  ୀିଵ

(ିଵ)!
భ!మ!⋯ೞ!

. 

Therefore, |ܣଵ| = ఈೖషభ

௦
. Now we have  

ఈೖ

௦
= |ܣ| = |ଵܣ| + ݏ) − 1)ܿ = ఈೖ

௦(௦ିଵ)
− ఈೖషభ

௦(௦ିଵ)
 . 

Since ߙ(݅, ݆) = |ଶܣ| = ܿ,  the result follows.                                                          
  

The following definition for the adjacency tensor of a non-uniform 
hypergraph has been proposed by Banerjee [3]:  

 

Definition 3.6. Let ℋ =  be a non-uniform ݇-hypergraph. The adjacency (ܧ,ܸ)
tensor of ℋ is defined as a ݇ order ݊-dimensional tensor ࣛ = (ܽభమ⋯ೖ), (1 ≤
݅ଵ, ݅ଶ,⋯ , ݅ ≤ ݊), in which ܽభమ⋯ೖ = ௦

ఈೖ
, if there is ݁ = {݈ଵ, ݈ଶ,⋯ , ݈௦} ∈  of ܧ

cardinality ݏ ≤ ݇ such that ݅ଵ, ݅ଶ,⋯ , ݅ are chosen in all possible way from 
{݈ଵ,⋯ , ݈௦} with at least once for each element of the set.  
 

By Theorem 1, it is easy to see that ∑  
మ,య ,⋯,ೖୀଵ ܽమ⋯ೖ = ݀. The degree 

tensor, ࣞ, is a ݇-th order ݊-dimensional diagonal tensor with its diagonal element 
݀⋯ being ݀. Then ℒ: = ࣞ −ࣛ is the Laplacian of the hypergraph ℋ, and 
࣫: = ࣞ + ࣛ is the signless Laplacian of the hypergraph ℋ. By Definition 2.2, if 
,ߣ) x) is an eigenpair of ࣛ then for ݅ ∈ ܸ we have:  

ିଵݔߣ = (ࣛx) =    


మ⋯ೖୀଵ

ܽమ⋯ೖݔమ⋯ݔೖ 
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   =   
ୀ{,మ ,⋯,ೞ}∈ா

ݏ
ߙ

⎝

⎜
⎛

  
భ,మ,⋯,ೞஹଵ

∑  ୀ

(݇ − 1)!
(݇ଵ − 1)!݇ଶ!⋯݇௦! ݔ

భିଵݔమ
మ⋯ݔೞ

ೞ

⎠

⎟
⎞

 

Similarly if (ߣ, x) is an eigenpair of ℒ, then we have:  
 

ିଵݔߣ = ݀ݔିଵ −   
ୀ{,మ,⋯,ೞ}∈ா

ݏ
ߙ

(   
భ,మ,⋯,ೞஹଵ

∑  ୀ

(݇ − 1)!
(݇ଵ − 1)!݇ଶ!⋯݇௦!

ݔ
భିଵݔమ

మ⋯ݔೞ
ೞ) 

and if (ߣ, x) is an eigenpair of ࣫, then we have:  
 

ିଵݔߣ = ݀ݔିଵ

+   
ୀ{,మ,⋯,ೞ}∈ா

ݏ
ߙ

⎝

⎜
⎛

  
భ,మ,⋯,ೞஹଵ

∑  ୀ

(݇ − 1)!
(݇ଵ − 1)! ݇ଶ!⋯݇௦!

ݔ
భିଵݔమ

మ⋯ݔೞ
ೞ

⎠

⎟
⎞

 

 

The last equalities follow from the fact that we should consider all possible 
permutations with repetition of ݅, ݈ଶ,⋯ , ݈௦ such that vertex ݅ occurs in the first 
place.  
 
4.  THE ADJACENCY MATRIX OF A NON−UNIFORM K−HYPERGRAPH 

In this section we introduce the adjacency matrix of a non-uniform k-hypergraph. 
This matrix has similar properties to those in the adjacency matrix of a graph.  

 
Definition 4.1. Let ℋ =  be a non-uniform ݇-hypergraph. The adjacency (ܧ,ܸ)
matrix of ℋ is (ܣℋ)× where (ܣℋ) = ∑  

య ,⋯,ೖୀଵ ܽయ⋯ೖ  , 1 ≤ ݅, ݆ ≤ ݊, in 
which ࣛ = (ܽభమ⋯ೖ) for (1 ≤ ݅ଵ, ݅ଶ,⋯ , ݅ ≤ ݊) is the adjacency tensor of ℋ.  
 

It is easy to see that ݀ = ∑  
ୀଵ ݅  for(ℋܣ) ∈ ܸ.  

 
Theorem 3. Let ℋ =  ℋ be itsܣ be a non-uniform ݇-hypergraph and (ܧ,ܸ)
adjacency matrix, then  

(ℋܣ) = ∑  ∈ாೕ ( ଵ
௦ିଵ

− ఈೖషభ

ఈೖ(௦ିଵ)
)  

Proof. By Definition 4.1 and Theorem 2, we have:  
(ℋܣ)  = ∑  

య,⋯,ೖୀଵ ܽయ⋯ೖ  
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               = ∑  ∈ாೕ ߙ
(݅, ݆) ௦

ఈೖ
= ∑  ∈ாೕ ( ఈೖ

௦(௦ିଵ)
− ఈೖషభ

௦(௦ିଵ)
) ௦
ఈೖ

 

               = ∑  ∈ாೕ ( ଵ
௦ିଵ

− ఈೖషభ

ఈೖ(௦ିଵ)
)                                                                 

 

By Definition 4.1 and the proof of Theorem 2, we have:  

(ℋܣ) =   


య,⋯,ೖୀଵ

ܽయ⋯ೖ =   
∈ா

ିଵߙ

ݏ
ݏ
ߙ

=   
∈ா

ିଵߙ

ߙ
 

Let ℋ be a uniform hypergraph. Since in uniform hypergraphs ߙିଵ = 0 
then (ܣℋ) = 0 that agrees the result in uniform hypergraphs. Also we have:  
 

 ݀ = ∑  
ୀଵ  (ℋܣ)

      = ∑  
ୀଵ
ஷ

∑  ∈ாೕ ( ଵ
௦ିଵ

− ఈೖషభ

ఈೖ(௦ିଵ)
) + ∑  ∈ா

ఈೖషభ

ఈೖ
 

     = ∑  
ୀଵ
ஷ

∑  ∈ாೕ
ଵ

௦ିଵ
+ ∑  ∈ா (ఈ

ೖషభ

ఈೖ
− (௦ିଵ)ఈೖషభ

ఈೖ(௦ିଵ)
)                              (4.1) 

      = ∑  
ୀଵ
ஷ

∑  ∈ாೕ
ଵ

௦ିଵ
 

Equality (4.1) is correct since every ݁ ∈ ݏ  occurs exactly inܧ − 1 edges in ܧ , 
for ݆ ≠ ݅. Therefore, ܣℋ can be defined as follows that agrees with Definition 4.1:  

(ℋܣ) = ቊ
∑  ∈ாೕ

ଵ
௦ିଵ

          ݅ ≠ ݆
      0         ݅ = ݆

  

In the following, we define the Cartesian product of two non-uniform ݇-
hypergraphs.  
 
Definition 4.2. Let ℋଵ = ( ଵܸ,ܧଵ) and ℋଶ = ( ଶܸ,ܧଶ) be two non-uniform ݇-
hypergraphs. The Cartesian product of ℋଵ and ℋଶ is a non-uniform ݇-hypergraph 
ℋ = ܸ where (ܧ,ܸ) = ଵܸ × ଶܸ and 

ܧ = {ݒ}} × ݒ|݁ ∈ ଵܸܽ݊݀  ݁ ∈ {ଶܧ ∪ {݁ × ݁|{ݒ} ∈ ݒ  ଵܽ݊݀ܧ ∈ ଶܸ}. 
  
Theorem 4. Let ℋ = -݇ be the Cartesian product of two non-uniform (ܧ,ܸ)
hypergraphs, ℋଵ = ( ଵܸ,ܧଵ) and ℋଶ = ( ଶܸ,ܧଶ) where ଵܸ = [݊ଵ] and ଶܸ = [݊ଶ]. If 
ℋభܣ are eigenvalues of ߤ and ߣ  and ܣℋమ , respectively, then ߣ +  is the eigenvalue ߤ
of ܣℋ.  
 
Proof. Let ܣℋ be the adjacency matrix of ℋ, then by Definition(4.1), 
(మ,మ),(భ,భ)(ℋܣ) = 0 if (ܽଵ,ܾଵ) and (ܽଶ, ܾଶ) are not adjacent in ℋ. Now suppose 
that (ܽଵ,ܾଵ) and (ܽଶ, ܾଶ) are adjacent, we consider two cases:   
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    1. (ܽଵ, ܾଵ) = (ܽଶ,ܾଶ) = (ܽ,ܾ), then we have:  

(,),(,)(ℋܣ)   = ∑  ∈ா(ೌ,್)
ఈೖషభ

ఈೖ
= ∑  ∈(ாభ)ೌ

ఈೖషభ

ఈೖ
+ ∑  ∈(ாమ)್

ఈೖషభ

ఈೖ
 

                                                                        = (,)(ℋଵܣ) +  (,)(ℋଶܣ)
  
    2. (ܽଵ, ܾଵ) ≠ (ܽଶ,ܾଶ), there are two subcases:   

I. ܽଵ = ܽଶ = ܽ and ܾଵ and ܾଶ are adjacent in ℋଶ, then we have:  

(,మ),(,భ)(ℋܣ)               = ∑  ∈ா(ೌ,್భ)(ೌ,್మ) ( ଵ
௦ିଵ

− ఈೖషభ

ఈೖ(௦ିଵ)
) 

                                       = ∑  ∈(ாమ)್భ್మ
( ଵ
௦ିଵ

− ఈೖషభ

ఈೖ(௦ିଵ)
) =  (భ,మ)(ℋଶܣ)

  
II. ܾଵ = ܾଶ = ܾ and ܽଵ and ܽଶ are adjacent in ℋଵ, then we have:  

(మ,),(భ,)(ℋܣ)               = ∑  ∈ா(ೌభ,್)(ೌమ,್) ( ଵ
௦ିଵ

− ఈೖషభ

ఈೖ(௦ିଵ)
) 

                                       = ∑  ∈(ாభ)ೌభೌమ
( ଵ
௦ିଵ

− ఈೖషభ

ఈೖ(௦ିଵ)
) =  (భ,మ)(ℋଵܣ)

  
Now suppose that ܺ ∈ ℝభ  and ܻ ∈ ℝమ  are the eigenvectors 

corresponding to the eigenvalues ߣ and ߤ, respectively. Let ܼ ∈ ℝభାమ is a vector 
in which  ݖ(,) = (ܾ,ܽ)  forݕݔ ∈ [݊ଵ] × [݊ଶ], we show that ܼ is an eigenvector 
of ܣℋ corresponding to the ߣ + Let (ܽଵ,ܾଵ) .ߤ ∈ [݊ଵ] × [݊ଶ], then we have:  
(ଵ,ܾଵܽ)(ℋܼܣ) = ∑  (మ,మ)∈[భ]×[మ] ,ଶܽ)ݖ(మ,మ)(భ,భ)(ℋܣ) ܾଶ)   
                           = ∑  (మ,మ)↔(భ,భ)   (ଶ,ܾଶܽ)ݖ(మ,మ)(భ,భ)(ℋܣ)
              = (ଵ,ܾଵܽ)ݖ(భ,భ)(భ,భ)(ℋܣ) + 
                   ∑  మ↔భ

మஷభ
,ଶܽ)ݖ(మ,మ)(భ,భ)(ℋܣ) ܾଶ) +       

                               ∑  మ↔భ
మஷభ

,ଶܽ)ݖ(మ,మ)(భ,భ)(ℋܣ) ܾଶ) 

              = భభ(ℋభܣ)ൣ + (ଵܾ)ݕ(ଵܽ)ݔభభ൧(ℋమܣ) + 
                  ∑  మ↔భ

మஷభ
(ଵܾ)ݕ(ଶܽ)ݔభమ(ℋభܣ) + ∑  మ↔భ

మஷభ
 (ଶܾ)ݕ(ଵܽ)ݔభమ(ℋమܣ)

             = ∑  మ↔భ (ଵܾ)ݕ(ଶܽ)ݔభమ(ℋభܣ) + ∑  మ↔భ  (ଶܾ)ݕ(ଵܽ)ݔభమ(ℋమܣ)
             = ∑(ଵܾ)ݕ  మ↔భ (ଶܽ)ݔభమ(ℋభܣ) + ∑(ଵܽ)ݔ  మ↔భ  (ଶܾ)ݕభమ(ℋమܣ)
                       = (ଵܽ)ݔߣ(ଵܾ)ݕ +   (ଵܾ)ݕߤ(ଵܽ)ݔ
                       = ߣ) + (ଵܾ)ݕ(ଵܽ)ݔ(ߤ = ߣ) + ,ଵܽ)ݖ(ߤ ܾଵ) 
This completes the proof.                                                                                           
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5.  SOME SPECTRAL PROPERTIES OF NON-UNIFORM HYPERGRAPHS  

Unlike hypergraphs, there are not many results on the spectral properties of non-
uniform hypergraphs. Consider the following definition.  
 
Definition 5.1.  Let ܻ ∈ ℝ be a vector and ݁ = {݅, ݈ଶ,⋯ , ݈௦} be an edge in the 
non-uniform ݇-hypergraph ℋ =   :is defined as follows (ݕ)ߚ The .(ܧ,ܸ)

(ݕ)ߚ =   
భ,మ,⋯,ೞஹଵ

∑  ୀ

(݇ − 1)!
(݇ଵ − 1)!݇ଶ!⋯݇௦!ݕ

భିଵݕమ
మ⋯ݕೞ

ೞ 

Now we have the following theorem:  
 
Theorem 5. Let ܻ ∈ ℝ be a vector and ݁ = {݅, ݆, ݈ଷ,⋯ , ݈௦} be an edge in the non-
uniform ݇-hypergraph ℋ = ,݅ where (ܧ,ܸ) ݆ are two distinct vertices in ܸ. Then 
(ݕ)ߚ = ݕ if and only if (ݕ)ߚ =   .ݕ
 
Proof. By Definition 5.1, we have: 

(ݕ)ߚ = ∑  భ,మ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ!

ݕ
భିଵݕ

మ⋯ݕೞ
ೞ  

 = ∑  భ,మ,⋯,ೞஹଵ,భୀଵ
∑  ୀ

(ିଵ)!
మ!య!⋯ೞ!

ݕ
మݕయ

య⋯ݕೞ
ೞ 

 +∑  భ,మ,⋯,ೞஹଵ,భஹଶ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ!

ݕ
భିଵݕ

మ⋯ݕೞ
ೞ 

 = ߚ
(ଵ)(ݕ) + ߚ

(ଶ)(ݕ) 
Similarly, we have for ߚ(ݕ):  

(ݕ)ߚ = ∑  భ,మ,⋯,ೞஹଵ,మୀଵ
∑  ୀ

(ିଵ)!
భ!య!⋯ೞ!

ݕ
భݕయ

య⋯ݕೞ
ೞ  

 +∑  భ,మ,⋯,ೞஹଵ,మஹଶ
∑  ୀ

(ିଵ)!
భ!(మିଵ)!⋯ೞ!

ݕ
భݕ

(మିଵ) ೞݕ⋯
ೞ 

  = ߚ
(ଵ)(ݕ) + ߚ

(ଶ)(ݕ) 

Next, we show that ߚ
(ଶ)(ݕ) = ߚ

(ଶ)(ݕ). Suppose that ݇ଵ, ݇ଶ,⋯ ,݇௦ are a 

choice of permissible ݇௧′s in ߚ
(ଶ)(ݕ), then its corresponding term in ߚ

(ଶ)(ݕ) is:  
(݇ − 1)!

(݇ଵ − 1)!݇ଶ!⋯݇௦!ݕ
భିଵݕ

మ⋯ݕೞ
ೞ  

Take ݇ଵᇱ = ݇ଵ − 1    ,    ݇ଶᇱ = ݇ଶ + 1    ,    ݇௧ᇱ = ݇௧    for    3 ≤ ݐ ≤  It’s trivial that .ݏ
݇ଵᇱ , ݇ଶᇱ ,⋯ ,݇௦ᇱ  are permissible in ߚ

(ଶ)(ݕ) and its corresponding term in ߚ
(ଶ)(ݕ) is:  
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(݇ − 1)!
݇ଵᇱ ! (݇ଶᇱ − 1)!⋯݇௦ᇱ !

ݕ
భᇲݕ

(మᇲିଵ) ೞݕ⋯
ೞᇲ =

(݇ − 1)!
(݇ଵ − 1)!݇ଶ!⋯݇௦!ݕ

భିଵݕ
మ⋯ݕೞ

ೞ  

Consequently, every term in ߚ
(ଶ)(ݕ) is equal to one term in ߚ

(ଶ)(ݕ) and 

since the number of terms in ߚ
(ଶ)(ݕ) and ߚ

(ଶ)(ݕ) is identical then ߚ
(ଶ)(ݕ) =

ߚ
(ଶ)(ݕ). Necessity is trivial. Now conversely suppose that ߚ(ݕ) =  then ,(ݕ)ߚ

ߚ
(ଵ)(ݕ) + ߚ

(ଶ)(ݕ) = ߚ
(ଵ)(ݕ) + ߚ

(ଶ)(ݕ)     and so     ߚ
(ଵ)(ݕ) = ߚ

(ଵ)(ݕ). 
Therefore,  ݕ = ݕ .                                                                                                   
 

Let ݅, ݆ be two vertices in the non-uniform ݇-hypergraph ℋ =  such (ܧ,ܸ)
that ܧ = ܧ = ᇱ ,and then ݀ܧ = ݀ = ݀. Now if (ߣ,ܺ) is an H-eigenpair of the 
Laplacian tensor of ℋ, then for ݅, ݆ ∈ ܸ, we have:  
 (݀ − ିଵݔ(ߣ = ∑  ∈ாᇲ

௦
ఈೖ
 (ݔ)ߚ

 (݀ − ିଵݔ(ߣ = ∑  ∈ாᇲ
௦
ఈೖ
 (ݔ)ߚ

and thus:  
 (݀ − ݔ(ߣ = ∑  ∈ாᇲ

௦
ఈೖ
(ݔ)ߚݔ =

              ∑  ∈ாᇲ
௦
ఈೖ

(∑  భ,మ ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ !

ݔ
భݔ

మ⋯ݔೞ
ೞ)                 (5.1) 

 (݀ − ݔ(ߣ = ∑  ∈ாᇲ
௦
ఈೖ
൯ݔ൫ߚݔ =

             ∑  ∈ாᇲ
௦
ఈೖ

(∑  భ,మ ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
భ!(మିଵ)!⋯ೞ !

ݔ
భݔ

మ⋯ݔೞ
ೞ)                 (5.2) 

But with a little care, we understand the coefficients of terms in the right 
sides of (5.1) and (5.2) are not identical. Then we can't deduce that the left sides of 
(5.1) and (5.2) are equal.  Generally, it seems that because of existence of different 
choices of ݇ଵ,݇ଶ,⋯ , ݇௦ in ߚ(ݔ) and ߚ(ݔ) that there are not in uniformity, many 
results are not provable here.  

 
Theorem 6. Let ℋ = be a non-uniform ݇-hypergraph and ℋ (ܧ,ܸ) = ( ܸ  ) forܧ,
݅ ∈  is an eigenpair of ℒ(ℋ) or ࣫(ℋ), in (ࢄ,0) be its connected components. If [ݏ]
which |ݔ௧| ≤ 1 for every ݐ ∈ ܸ, then (0,ࢄ( ܸ)) is an eigenpair of ℒ(ℋ) or 
࣫(ℋ),  whenever ࢄ( ܸ) ≠ 0 and in this situation we have |ݔ௧| = 1 for every 
ݐ ∈ ܸ.  
  
Proof. We first assume that (0,܆) is an eigenpair of ࣫(ℋ), the proof for the ℒ(ℋ) 
is similar. It is easy that (0,܆( ܸ)) is an eigenpair of ࣫(ℋ), whenever ܆( ܸ) ≠ 0. 
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Without loss of generality, suppose that ܆( ܸ) is an eigenvector of ࣫(ℋ) and 
ݔ = 1 for some ݆ ∈ ܸ and |ݔ௧| ≤ 1 for ݐ ∈ ܸ. Suppose that ݁ = {݆, ݈ଶ,⋯ , ݈௦} ∈   :ܧ

|(ݕ)ߚ|  = |∑  భ,మ ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ!

ݕ
భିଵݕమ

మ ೞݕ⋯
ೞ| 

                 ≤ ∑  భ,మ ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ!

⋯మ|మݕ||భିଵݕ| |ೞݕ|
ೞ  

                 ≤ ∑  భ,మ ,⋯,ೞஹଵ
∑  ୀ

(ିଵ)!
(భିଵ)!మ!⋯ೞ!

= ఈೖ

௦
 

Then  ௦
ఈೖ

|(ݕ)ߚ| ≤ 1. By eigen equations in the vertex ݆ ∈ ܸ, we have:  

 0 = (࣫(ℋ)܆ିଵ) = ݀ + ∑  ∈ாೕ
௦
ఈೖ
 (ݔ)ߚ

 ⇒ ∑  ∈ாೕ
௦
ఈೖ
(ݔ)ߚ = − ݀ . 

We show that ௦
ఈೖ
(ݕ)ߚ = −1 for all ݁ ∈  . First we show thatܧ

௦
ఈೖ

|(ݕ)ߚ| = 1        ∀  . By contradiction suppose that there exists ݁∗ ∈ ܧ  such that 

for all ݁ ∈ ܧ , ௦
ఈೖ

|(ݕ)ߚ| < 1. Thus, 

 ݀ = | − ݀| = |∑  ∈ாೕ
௦
ఈೖ
 |(ݔ)ߚ

                        ≤ ∑  ∈ாೕ
௦
ఈೖ

|(ݔ)ߚ| < ݀ , 

that is a contradiction. Now suppose that ௦
ఈೖ
(ݕ)ߚ = ܽ + ܾ݅  for arbitrary ݁ ∈  ,ܧ

we have ∑  ∈ாೕ
௦
ఈೖ
(ݔ)ߚ = − ݀   which shows that   ∑  ∈ாೕ ܽ = − ݀    and 

∑  ∈ாೕ ܾ = 0. On the other hand ܽଶ + ܾଶ = 1, then −1 ≤ ܽ ≤ 1 and −1 ≤ ܾ ≤
1. We show that ܽ = −1 for all ݁ ∈ ∗݁ . Suppose that there existsܧ ∈ ܧ   such 
that ܽ∗ > −1, then − ݀ < ∑  ∈ாೕ ܽ = − ݀, and therefore ∑  ∈ாೕ ܾ = 0. Thus 
௦
ఈೖ
(ݕ)ߚ = −1 for all ݁ ∈ ܧ . Since |ݔ௧| ≤ 1 for all ݐ ∈ ܸ and ௦

ఈೖ
|(ݕ)ߚ| = 1, for 

all ݁ ∈ |௧ݔ| , we haveܧ = 1, where  ݐ ∈ ݁. Now the result follows from the 
connectivity of ℋ.                                                                                                     
 

The situation for odd-bipartite non-uniform hypergraphs is principally 
different. Unlike odd-bipartite uniform hypergraphs [40, 20, 37], because of 
considering permutations with repetition of vertices of an edge in non-uniform 
hypergraphs, it can't be obtained similar results to uniformity case. In the 
following, we only propose one theorem that gives a necessary condition for 
equality of ܿ݁ݏܪ(ℒ) and ܿ݁ݏܪ(࣫). First, consider the following lemma:  
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Lemma 1. Let ℋ =  be a connected non-uniform ݇-hypergraph, then ࣛ, the (ܧ,ܸ)
adjacency tensor of ℋ, is weakly irreducible.  
 
Proof. Suppose that ℋ is connected, take matrix ܯ(ࣛ), such that  

 ݉ = ∑  ∈{మ,య,⋯,ೖ} ܽమ⋯ೖ = ∑  ୀ{,,య,⋯,ೞ}
௦
ఈೖ

ఈೖ

௦
=  |ܧ|

 By Definition(2.4), we should show that ܯ(ࣛ) is irreducible. By contradiction, 
suppose that ܯ(ࣛ) is reducible, then by definition there exists ܫ ⫋ {1,⋯ ,݊} such 
that ݉ = 0 for ݅ ∈ ݆ and ܫ ∉   :This shows that .ܫ

∄݁ ∈ ܧ  such that    ݅ ∈ ݆    ,    ܫ ∈  ܫ\ܸ
 On the other word, there are not ݁ ∈  and an element ܫ containing an element of ܧ
of ܸ\ܫ that contradicts the connectivity of ℋ. Thus ࣛ is weakly irreducible.         
 
Theorem 7. Let ℋ =  be a connected non-uniform ݇-hypergraph where (ܧ,ܸ)
ܸ = [݊] and let ℒ and ࣫ be the Laplacian and signless Laplacian tensors of ℋ, 
respectively. If ܿ݁ݏܪ(ℒ) =   .then ݇ is even and ℋ is odd-bipartite ,(࣫)ܿ݁ݏܪ
 
Proof. Since ℋ is connected then by Lemma 1, ࣛ and thus ࣫ are weakly 
irreducible. Therefore by proof of Theorem 2.2 and Lemma 2.1 in [40], there exists 
a diagonal matrix ,ܲ, of order n with all the diagonal entries ±1 and ܲ ≠   suchܫ−
that ℒ = ܲି(ିଵ)࣫ܲ. Now we have:  
ℒ = ܲି(ିଵ)࣫ܲ ⇔  ࣞ −ࣛ = ܲି(ିଵ)(ࣞ + ࣛ)ܲ    ⇔  −ࣛ = ܲି(ିଵ)ࣛܲ      (5.3) 

Now let ଵܸ = {݅ ∈ |ܸ = −1}. ଵܸ ≠ ߶ for otherwise ܲ =   and thusܫ
ࣛ = 0 that is a contradiction. On the other hand, since ܲ ≠  then ଵܸܫ− ⫋ ܸ. Now 
by (5.3) we have:  

−ܽభమ⋯ೖ = భభ
ି(ିଵ)మమ ೖೖܽభమ⋯ೖ⋯                        (5.4) 

Suppose that ݁ = {݅, ݆, ݈ଷ,⋯ , ݈௦} is an edge in ℋ, then ܽభమ⋯ೖ ≠ 0 for 
every permutation with repetition of ݅, ݆, ݈ଷ,⋯ , ݈௦ with at least once for each 
element of the set {݅, ݆, ݈ଷ,⋯ , ݈௦}. Suppose that ݅, ݆, ݅ଷ⋯݅  is a permissible 
permutation with repetition of ݅, ݆, ݈ଷ,⋯ , ݈௦, then ܽయ⋯ೖ ≠ 0 and therefore by 
(5.4) we have − =  ೖೖܽభమ⋯ೖ. Similarly for the permissible⋯
permutation with repetition ݆, ݅, ݅ଷ⋯݅  of ݅, ݆, ݈ଷ,⋯ , ݈௦, we have:  

− =  ೖೖܽభమ⋯ೖ⋯
Thus  =  . Now if ݇ is odd, then  =   and since ℋ is connected, then all
diagonal entries of ܲ are identital, therefore ܲ = ܲ  orܫ =   that is aܫ−
contradiction. Thus ݇ is even. 
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Now suppose that ݁ = {݈ଵ, ݈ଶ,⋯ , ݈௦} is an edge in ℋ, without loss of 
generality assume that ݁ ∩ ଵܸ = {݈ଵ, ݈ଶ,⋯ , ݈}, we show that ݎ is odd. We consider 
a permissible permutation with repetition in which ݇ଵ = ݇ଶ = ⋯ = ݇ = 1 and 
∑  ௦
௧ୀାଵ ݇௧ = ݇ − ,We have ݅ଵ .ݎ ݅ଶ,⋯ , ݅ = ݈ଵ, ݈ଶ,⋯ , ݈ , ݈ାଵ

ೝశభ,⋯ , ݈௦
ೞ. On the other 

hand, for this permutation, −1 = భభ
 = భభ  is odd.      ݎ ,ೝೝ. Consequently⋯

 
6. CONCLUSION  

In this paper, we analyze the non-uniform hypergraph. Because of the existence of 
edges with different cardinality in the general hypergraph, we should consider all 
permutations with repetition of vertices in each edge. Then some theorems in 
uniform hypergraphs are fundamentally different here. We try to identify some of 
their properties that lead to different results in non-uniform hypergraphs.  
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