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The edge Mostar index  ݋ܯ௘(ܩ) of a connected graph ܩ is defined 
as݋ܯ௘(ܩ) = ∑ |௘ୀ௨௩∈ா(ீ) ݉௨(݁|ܩ)−݉௩(݁|ܩ)|, where ݉௨(݁|ܩ)and 
݉௩(݁|ܩ) are, respectively, the number of edges of ܩ lying closer to 
vertex ݑ than to vertex ݒ and the number of edges of ܩ lying closer 
to vertex ݒ than to vertex ݑ. In this paper, we determine the extremal 
values of edge Mostar index of some graphs. We characterize 
extremal trees, unicyclic graphs and determine the extremal graphs 
with maximum and second maximum edge Mostar index among 
cacti with size ݉ and ݐ cycles. At last, we give some open problems. 
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1. INTRODUCTION  

In this paper, all graphs we consider are finite, undirected, and simple. Let ܩ  be a 
connected graph with vertex set  ܸ(ܩ) and edge set (ܩ)ܧ . Let |ܩ|  and |(ܩ)ܧ|  be the 
number of vertices and edges of ܩ, respectively. For a vertex ݑ ∈  ,ݑ the degree of ,(ܩ)ܸ
denoted by ݀ீ(ݑ) (or simply ݀(ݑ)), is the number of vertices which are adjacent to ݑ. Call 
a vertex ݑ a pendent vertex of ܩ, if ݀(ݑ) = 1 and call an edge ݒݑ a pendent edge of ܩ, if 
(ݑ)݀ = 1  or (ݒ)݀  = 1 ௡ܥ . , ܵ௡  and ௡ܲ  denote the cycle, star, and path with ݊  vertices, 
respectively. For ݒ ∈ ܩ let ,(ܩ)ܸ −  and ݒ obtained by deleting vertex ܩ be a subgraph of ݒ
adjacent edges. For ݁ ∈ ܩ let ,(ܩ)ܧ − ݁ be a subgraph of ܩ obtained by deleting edge ݁. 

Among all the topological indices, the most well-known is the Wiener index [8], 
which is defined as the sum of distances over all unordered vertex pairs in ܩ , namely 
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(ܩ)ܹ = ∑ ,ݑ)ீ݀ (ீ)௏⊇{௨,௩}(ݒ . A long time known property of the Wiener index is the 
formula [8] 

(ܩ)ܹ = ∑ ݊௨(݁|ܩ)݊௩(݁|ܩ)௘ୀ௨௩∈ா(ீ) , 
where ݊௨(݁|ܩ) and ݊௩(݁|ܩ) are, respectively, the number of vertices of ܩ lying closer to 
vertex ݑ than to vertex ݒ and the number of vertices of ܩ lying closer to vertex ݒ than to 
vertex ݑ. It is applicable for trees. Using the above formula, another topological index 
named the Szeged index [3], was introduced by Gutman, which is an extension of the 
Wiener index and defined by 

(ܩ)ݖܵ  = ∑ ݊௨(݁|ܩ)݊௩(݁|ܩ).௘ୀ௨௩∈ா(ீ)   
Given an edge ݁ = ݒݑ ∈  ,݁ and the edge ݔ the distance between the vertex ,(ܩ)ܧ

denoted by ݀(ݔ, ݁) , is defined as ݀(ݔ, ݁) = min{݀(ݔ, {(ݒ,ݔ)݀,(ݑ . Denote ܯ௨(݁|ܩ) =
{݁ ∈ ,ݑ)݀:(ܩ)ܧ ݁) < ,ݒ)݀ ݁)} and ܯ௩(݁|ܩ) = {݁ ∈ ,ݒ)݀:(ܩ)ܧ ݁) < ,ݑ)݀ ݁)} . Let 
݉௨(݁|ܩ) = (ܩ|݁)and ݉௩ |(ܩ|݁)௨ܯ| =  is ܩ Then, the edge Szeged index [4] of .|(ܩ|݁)௩ܯ|
defined as  

(ܩ)௘ݖܵ = ∑ ݉௨(݁|ܩ)݉௩(݁|ܩ)௘ୀ௨௩∈ா(ீ) . 
Szeged index and edge Szeged index belongs to the class of bond-additive indices. 

Recently, another bond-additive topological index, named the Mostar index, has been 
introduced [2]. The Mostar index of a graph ܩ is defined as 

(ܩ)݋ܯ = ∑ |݊௨(݁|ܩ)−݊௩(݁|ܩ)|௘ୀ௨௩∈ா(ீ) . 
In [2], Došlić et al. proposed and investigated the Mostar index as a measure of 

peripherality in graphs. They determined its extremal values and characterized extremal 
trees and unicyclic graphs and gave a cut method for computing the Mostar index of 
benzenoid systems. In [6], Tepeh proved a conjecture of [2] on a characterization of 
bicyclic graphs with given number of vertices. One can refer [1,5,7] for more and some 
other details on the Mostar index. 

The edge Mostar index [1] of a graph ܩ is defined as  
(ܩ)௘݋ܯ = ∑ |݉௨(݁|ܩ)−݉௩(݁|ܩ)|௘ୀ௨௩∈ா(ீ) . 

For the sake of simplicity, we consider the contribution ߶(݁) of an edge ݁ =  defined as ݒݑ
߶(݁) = |݉௨(݁|ܩ)−݉௩(݁|ܩ)|. The edge Mostar index is also one of the bond-additive 
indices. Edge Mostar index has also been introduced recently as a quantitative refinement 
of the distance nonbalancedness, and it can also measure peripherality of every edge and 
consider the contributions of all edges into a global measure of peripherality for a given 
chemical graph.  

A connected graph is a cactus if any two cycles have at most one common vertex. A 
cycle in a cactus is called end-block if all but one vertex of the cycle have degree two. A 
bundle is a cactus that all cycles in the cactus have exactly one common vertex. Denoted by 
,݉)ܥ  .cycles ݐ the class of all cactus with ݉ edges in cycle and (ݐ
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In this paper, we determine the extremal values of edge Mostar index of some 
graphs. We characterize extremal trees, unicyclic graphs and determine the extremal graphs 
with maximum and second maximum edge Mostar index among cacti with size ݉ and ݐ 
cycles. At last, we give some open problems. 

2. PRELIMINARY RESULTS  

 Lemma 2.1. Let ݁ =  Then .ܩ be a cut edge of connected graph ݒݑ
߶(݁) = |݉௨(݁|ܩ)−݉௩(݁|ܩ)| ≤ ݉ − 1 

with equality if and only if ݁ is a pendent edge. 
 
Lemma 2.2. (The edge-lifting transformation) Let ܩ be a graph with a cut, not pendent 
edge ݁ =  ᇱ is the graph obtained by contracting the edge ݁ and adding a pendentܩ .ݒݑ
edge ݁ᇱ = (ܩ)௘݋ܯ see Figure 1. Then ,ݓ at the contracting vertex ݖݓ <  .(ᇱܩ)௘݋ܯ

Proof. From the definition of edge Mostar index, we known that ߶ீ(݁) ≤ ݉ − 3  and 
߶ீᇲ(݁) = ݉ − 1 . The contribution of other edges stays unchanged. Then ݋ܯ௘(ܩ) −
(ᇱܩ)௘݋ܯ ≤ −2 < 0. So, ݋ܯ௘(ܩ) <  ■                                                                      .(ᇱܩ)௘݋ܯ

 

 
Figure 1. The edge-lifting transformation. 

 
3. THE EXTREMAL TREES AND UNICYCLIC GRAPHS 

Theorem 3.1. Let ܩ be a tree with ݉ (݉ ≥ 4) edges. Then 
)௘݋ܯ ௠ܲାଵ) < (ଶܮ)௘݋ܯ ≤ (ܩ)௘݋ܯ ≤ (ଵܮ)௘݋ܯ <         ,௘(ܵ௠ାଵ)݋ܯ

for graphs ܮଵ and ܮଶ presented in Figure 2. 

Proof. Using the edge-lifting transformation of Lemma 2.2 repeatedly, we have that 
(ܩ)௘݋ܯ ≤ (ଵܮ)௘݋ܯ = ݉ଶ −݉ − 2 < ௘(ܵ௠ାଵ)݋ܯ = ݉ଶ −݉. 

Suppose that ܩ is a tree with ݉ edges and ܩ is not a path. Then, there exists a vertex 
ܩ of degree at least three such that at least two components of ݖ −  are paths. Denote the ݖ
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two paths are ௦ܲ = ௦ݑ⋯ଶݑଵݑ  and ௧ܲ = ௧ݒ⋯ଶݒଵݒ  (1 ≤ ݏ ≤ ᇱܩ Let .(ݐ = ܩ − {௦ݑ௦ିଵݑ} +
 Then .{௦ݑ௧ݒ}
(ᇱܩ)௘݋ܯ−(ܩ)௘݋ܯ     = [(݉− 1) + (݉ − 3) + ⋯+ (݉− ݏ2 + 3) + (݉ − ݏ2 + 1)] 

                         + [(݉ − 1) + (݉ − 3) + ··· +(݉− ݐ2 + 3) + (݉ − ݐ2 + 1)] 
                         − [(݉ − 1) + (݉ − 3) + ··· +(݉− ݏ2  + 5) + (݉ − ݏ2 + 3)] 
                         − [(݉ − 1) + (݉ − 3) + ··· +(݉− ݐ2 + 1) + (݉ − ݐ2 − 1)] 
                         = ݐ)2  − (ݏ + 2 > 0. 

By computation, we have that ݋ܯ௘( ௠ܲାଵ) = ଵ
ଶ
݉ଶ for ݉ ≡ )௘݋ܯ ;(2 ݀݋݉) 0 ௠ܲାଵ) =

ଵ
ଶ

(݉ଶ − 1) for ݉ ≡ )௘݋ܯ It means that .(2 ݀݋݉) 1 ௠ܲାଵ) = ⌊ଵ
ଶ
݉ଶ⌋. ݋ܯ௘(ܮଶ) = ଵ

ଶ
݉ଶ + 2 

for ݉ ≡ (ଶܮ)௘݋ܯ ;(2 ݀݋݉) 0 = ଵ
ଶ

(݉ଶ + 3) for ݉ ≡ (ଶܮ)௘݋ܯ It means that .(2 ݀݋݉) 1 =

⌊ଵ
ଶ
݉ଶ⌋ + 2. Such that ݋ܯ௘(ܩ) ≥ (ଶܮ)௘݋ܯ = ⌊ଵ

ଶ
݉ଶ⌋ + 2 > )௘݋ܯ ௠ܲାଵ) = ⌊ଵ

ଶ
݉ଶ⌋. 

The proof is completed.                                                                                                 ∎ 
 

 
Figure 2. The extremal trees and unicyclic graphs. 

If ܩ is a unicyclic graph, It is obvious that ݋ܯ௘(ܩ) ≥ (௠ܥ)௘݋ܯ = 0. 

Lemma 3.2. Let ܩ be a unicyclic graphs with ݉ edges, and the unique cycle ܥ௚. Then 

(ܩ)௘݋ܯ ≤ ൜
(݉− ݃)(݉ + ݃ − 1),         ݃ ≡   (2 ݀݋݉) 0
(݉− ݃)(݉ + ݃ + 2),          ݃ ≡  , (2 ݀݋݉) 1

with equality if and only if ܩ is obtained from ܥ௚ by attaching ݉ − ݃ pendent edges at the 
same one vertex of ܥ௚. 

Proof. Suppose that ܩ  is a unicyclic graph with the unique cycle ܥ௚ =  .ଵݒ௚ݒ⋯ଶݒଵݒ
Repeating the edge-lifting transformation of Lemma 2.2, the edge of ܧ\(ܩ)ܧ(ܥ௚) are all 
pendent edge. Denote ௝݉ (1 ≤ ݆ ≤ ݃) the number of pendent edges attached at ݒ௝, then  
∑ ௝݉
௚
௝ୀଵ = ݉ − ݃. 

i. ݃ ≡ ݆ For .(2 ݀݋݉) 0 ≡ ௝ାଵ൯ݒ௝ݒ൫߶ ,(݃ ݀݋݉) 0 = |∑ ௝݉ା௞

೒
మ
௞ୀଵ −∑ ௝݉ା௞

௚
௞ୀ೒మାଵ

| ≤

∑ ௝݉ = ݉ − ݃௚
௝ୀଵ . As the arbitrariness of ݆, the equality holds if and only if all 
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݉ − ݃ pendent edges attached at the same one vertex of ܥ௚. Such ∑ ߶௘∈ா(ீ) (݁) ≤
(݉ − 1)(݉− ݃) + (݉ − ݃)݃ = (݉ − ݃)(݉ + ݃ − 1) , the equality holds if and 
only if all cut edges are pendent edges and all pendent edges attached at the same 
one vertex of ܥ௚. 

ii. ݃ ≡ .(2 ݀݋݉) 1  For ݆ ≡ (݃ ݀݋݉) 1 , ߶൫ݒ௝ݒ௝ାଵ൯ = |∑ ௝݉ା௞

೒
మିଵ
௞ୀଵ −∑ ௝݉ା௞

௚
௞ୀ೒శయమ

| ≤

݉ − ݃ − ௝݉ . As the arbitrariness of ݆, the equality holds if and only if all ݉− ݃ 
pendent edges attached at the same one vertex of ܥ௚ . Such ∑ ߶௘∈ா(ீ) (݁) ≤
(݉ − 1)(݉− ݃) + (݉ − ݃)(݃ − 1) = (݉ − ݃)(݉ + ݃ − 2), the equality holds if 
and only if all cut edges are pendent edges and all pendent edges attached at the 
same one vertex of ܥ௚. 

The proof is completed.                                                                                                         ∎ 

Theorem 3.3. Let ܩ be a unicyclic graphs with ݉ edges, then  

(ܩ)௘݋ܯ ≤ ቐ
݉ଶ − 2݉− 3,    3 ≤ ݉ ≤ 8 
60,                                ݉ = 9  
݉ଶ −݉ − 12,         ݉ ≥ 10

,   

with equality if and only if ܩ ≅ ଵ (see Figure 2) for 3ܪ ≤ ݉ ≤ ܩ ;8 ≅ ܩ ଵ orܪ ≅ ଶܪ  for 
݉ = ܩ ;9 ≅ ݉ ଶ (Figure 2) forܪ ≥ 10. 

Proof. By Lemma 3.2, if ݃ ≡ (2 ݀݋݉) 0 , then ݋ܯ௘(ܩ) ≤ (݉ − ݃)(݉ + ݃ − 1) ≤
(݉ − 4)(݉ + 3) = ݉ଶ −݉ − 12 , with equality if and only if ݃ = 4  and all ݉ − 4 
pendent edges attached at the same one vertex of ܥସ, i.e. ܩ ≅ ݃ ଶ. Ifܪ ≡  then ,(2 ݀݋݉) 1
(ܩ)௘݋ܯ ≤ (݉ − ݃)(݉ + ݃ − 2) ≤ (݉ − 3)(݉ + 1) = ݉ଶ − 2݉ − 3 , with equality if 
and only if ݃ = 3 and all ݉ − 3 pendent edges attached at the same one vertex of ܥଷ , 
i.e. ܩ ≅  .ଵܪ

Comparing the edge Mostar index of ܪଵ  and ܪଶ (ଵܪ)௘݋ܯ , (ଶܪ)௘݋ܯ− = 9 −݉. 
Such that, if 3 ≤ ݉ ≤ 8, then ݋ܯ௘(ܩ) ≤ ݉ଶ − 2݉− 3 with equality if and only if ܩ ≅
݉ ଵ; ifܪ = 9, then ݋ܯ௘(ܩ) ≤ 60 with equality if and only if ܩ ≅ ଵܪ  or ܩ ≅ ݉ ଶ; ifܪ ≥
10, then ݋ܯ௘(ܩ) ≤ ݉ଶ −݉ − 12 with equality if and only if ܩ ≅   .ଶܪ

The proof is completed.                                                                                              ∎ 

4. THE MAXIMUM VALUE OF EDGE MOSTAR INDEX AMONG CACTI 

In the following, we give the sharp upper bounds of edge Mostar index among cacti. 
 
Lemma 4.1. Let ܩ be a connected graph with a cycle ܥ௚ and ܩ −  has ݃ connected (௚ܥ)ܧ
components. Then 
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∑ ߶(݁) ≤ ൜݃
(݉ − ݃),                    ݃ ≡   (2 ݀݋݉) 0

(݃ − 1)(݉− ݃),        ݃ ≡ ௘ୀ௨௩∈ா(஼೒) (2 ݀݋݉) 1 , 

with equality if and only if ܥ௚ is an end-block. 
 
Proof. Let ܥ௚ = ܩ ௝ the components ofܩ ଵ. Denoted byݒ௚ݒ⋯ଶݒଵݒ −  that contains (௚ܥ)ܧ
௝ݒ  for 1 ≤ ݆ ≤ ݃. Let ݁௚ = ଵݒ௚ݒ  and ݁௚௝ = ௝ାଵݒ௝ݒ  (1 ≤ ݆ ≤ ݃ − 1). Denote ௝݉ = (௝ܩ)ܧ , 
then ∑ ௝݉

௚
௝ୀଵ = ݉− ݃. 

 
(݅)   ݃ ≡  .(2 ݀݋݉) 0

For ݁௚ = ଵݒ௚ݒ ∈ (௚ܥ)ܧ , we have that ܯ௩భ(݁) = (ଵܩ)ܧ ∪ (ଶܩ)ܧ ∪⋯∪ ܧ ቀܩ೒
మ
ቁ ∪

{݁ଵ, ݁ଶ, … , ݁೒
మିଵ

}  and ܯ௩೒(݁) = ೒ܩ)ܧ
మାଵ

) ∪ ೒ܩ)ܧ
మାଶ

) ∪⋯∪ (௚ܩ)ܧ ∪ {݁೒
మାଵ

, ݁೒
మାଶ

, … , ݁௚ିଵ} . 

If ∑ ௝݉

೒
మ
௝ୀଵ ≥ ∑ ௝݉

௚
௝ୀ೒మାଵ

, then 

 ߶(݁) = |∑ ௝݉

೒
మ
௝ୀଵ −∑ ௝݉

௚
௝ୀ೒మାଵ

| = ∑ ௝݉
௚
௝ୀଵ − 2∑ ௝݉ ≤ ݉ − ݃,௚

௝ୀ೒మାଵ
 

equality holds if and only if ௝݉ = 0 for ݆ = ௚
ଶ

+ 1, ௚
ଶ

+ 2, … ,݃. If ∑ ௝݉

೒
మ
௝ୀଵ ≤ ∑ ௝݉

௚
௝ୀ೒మାଵ

, 

then  

 ߶(݁) = |∑ ௝݉

೒
మ
௝ୀଵ −∑ ௝݉

௚
௝ୀ೒మାଵ

| = ∑ ௝݉
௚
௝ୀଵ − 2∑ ௝݉ ≤ ݉ − ݃,

೒
మ
௝ୀଵ  

equality holds if and only if ௝݉ = 0 for ݆ = 1, 2, … , ௚
ଶ
. 

Similarly, we have that ߶(݁௞) = |݉௩ೖ(݁௞)−݉௩ೖାଵ(݁௞)| ≤ ݉ − ݃  (1 ≤ ݇ ≤ ݃ −
1 ), equality holds if and only if ௝݉ = 0  for ݆ = ݇ − ௚

ଶ
, ݇ −  ௚

ଶ
+ 1, … , ݇  or ௝݉ = 0  for 

݆ = ݇ + 1,݇ + 2, … ,݇ + ௚
ଶ

, where ݆ ≡ (݃ ݀݋݉) 0 . Thus, ∑ ߶(݁) ≤௘ୀ௨௩∈ா൫஼೒൯ ݃(݉ − ݃) , 

with equality if and only if ܥ௚ is an end-block. 
 
(݅݅)   ݃ ≡  .(2 ݀݋݉) 1

For ݁௚ = ଵݒ௚ݒ ∈ (݁)௩భܯ we have that ,(௚ܥ)ܧ = (ଵܩ)ܧ ∪ (ଶܩ)ܧ ∪⋯∪ ೒షభܩ)ܧ
మ

) ∪

{݁ଵ, ݁ଶ, … , ݁೒షభ
మ

}  and ܯ௩೒(݁) = ೒శయܩ)ܧ
మ

) ∪ ೒శఱܩ)ܧ
మ

) ∪⋯∪ (௚ܩ)ܧ ∪ {݁೒శభ
మ

, ݁೒శయ
మ

, … , ݁௚ିଵ} .If 

∑ ௝݉

೒షభ
మ
௝ୀଵ ≥ ∑ ௝݉

௚
௝ୀ೒శయమ

, then 

 ߶(݁) = |∑ ௝݉

೒షభ
మ

௝ୀଵ −∑ ௝݉
௚
௝ୀ೒శయమ

| = ∑ ௝݉ −݉೒శభ
మ

௚
௝ୀଵ − 2∑ ௝݉ ≤ ݉ − ݃ −݉೒శభ

మ
,௚

௝ୀ೒శయమ
   

equality holds if and only if ௝݉ = 0 for ݆ = ௚ାଷ
ଶ

, ௚ାହ
ଶ

, … ,݃. If ∑ ௝݉

೒షభ
మ

௝ୀଵ ≤ ∑ ௝݉
௚
௝ୀ೒శయమ

, then 
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 ߶(݁) = |∑ ௝݉

೒షభ
మ
௝ୀଵ − ∑ ௝݉

௚
௝ୀ೒శయమ

| = ∑ ௝݉
௚
௝ୀଵ −݉೒శభ

మ
− 2∑ ௝݉ ≤ ݉ − ݃ −݉೒శభ

మ
,

೒షభ
మ

௝ୀଵ    

equality holds if and only if ௝݉ = 0 for ݆ = 1, 2, … , ௚ିଵ
ଶ

. 

Similarly, we have that ߶(݁௞) = |݉௩ೖ(݁௞) −݉௩ೖାଵ(݁௞)| ≤ ݉ − ݃ (1 ≤ ݇ ≤ ݃ −

1), equality holds if and only if ௝݉ = 0 for ݆ = ݇ − ௚ିଷ
ଶ

,݇ −  ௚ିହ
ଶ

, … , ݇  or  ௝݉ = 0  for 

݆ = ݇ + 1,݇ + 2, … ,݇ + ௚ିଵ
ଶ

, where ݆ ≡  ,Thus .(݃ ݀݋݉) 0
∑ ߶(݁) ≤ ∑ (݉ − ݃ − ௝݉

௚
௝ୀଵ ) ≤௘ୀ௨௩∈ா൫஼೒൯ (݃ − 1)(݉− ݃), 

with equality if and only if ܥ௚ is an end-block. 
So, the proof is completed.                                                                                        ∎ 

 
Denote ܩ௠(݃ଵ,݃ଶ, … ,݃௧)  a bundle of ݐ  cycles with lengths ݃ଵ,݃ଶ, … ,݃௧  and ݉−

∑ ݃௝௧
௝ୀଵ  pendent edges attached to the unique common vertices of all cycles. Let ࣡௠ be the 

set of ܩ௠(݃ଵ,݃ଶ, … ,݃௧) with ݃௝ = 3 or ݃௝ = 4 for ݆ = 1, 2, … ,  .ݐ
 
Lemma 4.2. For any graph ܩ ∈ ࣝ(݉, ,ଶܥ,ଵܥ suppose that ,(ݐ … ௧ܥ,  be the edge-disjoint 
cycles. Denote ݃௝ = |௝ܥ|  for  ݆ = 1, 2, … , ݐ , where ݃௝ ≡ (2 ݀݋݉) 1  ( ݆ = 1, 2, … , ݎ ) and 
݃௝ ≡ ݆) (2 ݀݋݉) 0 = ݎ + 1, ݎ + 2, … ,  Then .(ݐ

(ܩ)௘݋ܯ ≤ ݉ଶ ݎ)݉− + 1) −∑ ݃௝௥
௝ୀଵ (݃௝ − 2) −∑ ݃௝௧

௝ୀ௥ାଵ (݃௝ − 1), 
with equality if and only if ܩ ≅ )௠ܩ ଵ݃,݃ଶ, … ,݃௧). 
 
Proof. Denote ܧ∗ the set of all cut edge of ܩ. Then ܧ∗ = ⋃}(ܩ)ܧ ௧(௝ܥ)ܧ

௝ୀଵ } and |ܧ∗| =
݉ −∑ ݃௝௧

௝ୀଵ . By Lemma 2.1, we have that ∑ ߶(݁) ≤ (݉ − 1)(݉−௘∈ா∗ ∑ ݃௝௧
௝ୀଵ ) , with 

equality if and only if all cut edges are pendent edges. 
By Lemma 4.1, we have that (1) If ݆ = 1, 2, … , ݎ , then ∑ ߶(݁) ≤ (݃௝ −௘∈ா(஼ೕ)

1)(݉−∑ ݃௝௧
௝ୀଵ ) , with equality if and only if ܥ௝  is an end-block. (2) If ݆ = ݎ + 1, ݎ +

 2, … , ∑ then ,ݐ ߶(݁) ≤ ݃௝(݉−௘∈ா(஼ೕ) ∑ ݃௝௧
௝ୀଵ ), with equality if and only if ܥ௝ is an end-

block. With the definition of edge Mostar index, we have that 
(ܩ)௘݋ܯ     ≤ (݉ − 1)൫݉ − ∑ ݃௝௧

௝ୀଵ ൯ − ∑ (݃௝௥
௝ୀଵ − 1)൫݉ − ݃௝൯ −∑ ݃௝௧

௝ୀ௥ାଵ ൫݉ − ݃௝൯  
                  = ݉(݉ − 1) −∑ ݃௝௧

௝ୀଵ (݉ − 1) + ∑ ݃௝௧
௝ୀଵ ൫݉ − ݃௝൯ − ∑ ൫݉ − ݃௝൯௥

௝ୀଵ        
                  = ݉(݉ − 1) −∑ ݃௝௧

௝ୀଵ ൫݃௝ − 1൯ − ∑ ൫݉ − ݃௝൯௥
௝ୀଵ        

                  = ݉ଶ ݎ)݉− + 1) −∑ ݃௝௥
௝ୀଵ (݃௝ − 2) −∑ ݃௝௧

௝ୀ௥ାଵ (݃௝ − 1), 
with equality if and only if all cut edges are pendent edges and all cycles are end-blocks, 
i.e. ܩ ≅ ⋯,௠(݃ଵ,݃ଶܩ ,݃௧). 

Hence, the proof is completed.                                                                                   ∎ 
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Theorem 4.3. Let ܩ ∈ ࣝ(݉,  be a connected graph. Then (ݐ

(1) If ݉ ≥ 10 and ݉ < (ܩ)௘݋ܯ then ,ݐ4 ≤ 2݉ଶ − 8݉ + (24−  with equality if and ݐ(4݉
only if ܩ ≅ ,௠(3ܩ 3, … ,3ᇣᇧᇤᇧᇥ

ସ௧ି௠
, 4, 4, … ,4ᇣᇧᇤᇧᇥ

௠ିଷ௧
). 

(2) If ݉ ≥ 10  and ݉ ≥ ,ݐ4  then ݋ܯ௘(ܩ) ≤ ݉ଶ −݉ − ݐ12  with equality if and only if 
ܩ ≅ ,௠(4,4ܩ … ,4). 

(3) If ݉ = 9, then ݋ܯ௘(ܩ) = 72 − ܩ with equality if and only if ݐ12 ≅ ࣡ଽ. 
(4) If ݉ < 9 , then ݋ܯ௘(ܩ) ≤ ݉ଶ −݉ − (݉ + ݐ(3  with equality if and only if ܩ ≅
,௠(3,3ܩ       … ,3). 
 
Proof. Suppose that ܥଵ,ܥଶ, … ௧ܥ,  are ݐ  edge-disjoint cycles of ܩ  and ݃௝ = หܥ௝ห  for  ݆ =
1, 2, … , ,ݐ  where ݃௝ ≡ (2 ݀݋݉) 1  ( ݆ = 1, 2,⋯ , ݎ ) and ݃௝ ≡ (2 ݀݋݉) 0  ( ݆ = ݎ + 1, ݎ +
2, … , (ܩ)௘݋ܯ By Lemma 4.2, we have that .(ݐ ≤ )௠ܩ௘൫݋ܯ ଵ݃,݃ଶ, … ,݃௧)൯. Let     
    ݂(݃ଵ,݃ଶ, … ,݃௧) = ,௠(݃ଵ,݃ଶܩ௘൫݋ܯ … ,݃௧)൯ 
                               = ݉ଶ ݎ)݉− + 1)− ∑ ݃௝௥

௝ୀଵ (݃௝ − 2)− ∑ ݃௝௧
௝ୀ௥ାଵ (݃௝ − 1).  

Then  ப௙(௚భ,௚మ,…,௚೟)
ப௚ೕ

= −4݃௝ − 1 < 0. So, ݂(݃ଵ,݃ଶ, … ,݃௧) is decreased for ݃௝ (1 ≤ ݆ ≤  .(ݐ

Hence, ݂(݃ଵ,݃ଶ, … ,݃௧) ≤ ݂(3, 3, … ,3ᇣᇧᇤᇧᇥ
௥

, 4, 4,⋯ ,4ᇣᇧᇤᇧᇥ
௧ି௥

) = ݉ଶ −݉ − ݐ12 − ݉)ݎ − 9). 

Denote (ݎ)ܪ = ݉ଶ −݉ − ݐ12 − ݉)ݎ − (ݎ)ᇱܪ ,(9 = 9 −݉.  Note that if ݉ ≥ 10 
and ݉ − ݐ4 < 0, then there are at least ݏ  triangles, where 3ݏ + ݐ)4 − (ݏ = ݉ , i.e., ݏ  =
ݐ4 − ݉ > 0. So we have that 

If ݉ ≥ 10  and ݉ < (ݎ)ᇱܪ then ,ݐ4 < 0  and ݋ܯ௘(ܩ) ≤ ݐ4)ܪ − ݉) = 2݉ଶ −
8݉ + (24− ܩ with equality if and only if ݐ(4݉ ≅ ,௠(3ܩ 3, … ,3ᇣᇧᇤᇧᇥ

ସ௧ି௠
, 4, 4, … ,4ᇣᇧᇤᇧᇥ

௠ିଷ௧
). 

If ݉ ≥ 10  and ݉ ≥ (ݎ)ᇱܪ then ,ݐ4 < 0  and ݋ܯ௘(ܩ) ≤ (0)ܪ = ݉ଶ −݉ −  ݐ12
with equality if and only if ܩ ≅ ,௠(4,4ܩ … ,4). 

If ݉ = 9, then ܪᇱ(ݎ) = 0 and ݋ܯ௘(ܩ) ≤ ݂(݃ଵ,݃ଶ, … ,݃௧) ≤ 72=(ݎ)ܪ −  with ݐ12
equality if and only if ܩ ≅ ࣡ଽ. 

If ݉ < 9 , then (ݎ)ᇱܪ  > 0 and (ܩ)௘݋ܯ  ≤ ݂(݃ଵ,݃ଶ, … ,݃௧) ≤ (ݎ)ܪ ≤ ଶ݉=(ݐ)ܪ −
݉ − (݉ + ܩ with equality if and only if ݐ(3 ≅ ,௠(3,3ܩ … ,3). 

The proof is completed.                                                                                               ∎ 

If ݐ = 1, ࣝ(݊, 1) is the set of unicyclic graphs. The maximum edge Mostar index 
among ࣝ(݊, 1) are determined, which is consistent with the result of the Theorem 3.3. 
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5. THE SECOND MAXIMUM VALUE OF EDGE MOSTAR INDEX AMONG 

CACTI 
In the following, we will determine the unique graph in ࣝ(݉,  with second maximum edge(ݐ
Mostar index. We assume that ݉ ≥ 10 and ݉ ≥   Let .ݐ4

ࣝ଴(݉, (ݐ ≜ ,௠(4ܩ 4,⋯ ,4)ᇣᇧᇧᇤᇧᇧᇥ
௧

. 

Denote ࣝଵ(݉, −݉)the graph that is obtained from ࣝ଴ (ݐ 1,  by adding a pendent edge at (ݐ
a pendent vertex. If ܩ ∈ ࣝ(݉, ,݉)଴ࣝ}\(ݐ   :there are three possibilities ,{(ݐ

(1) There exists a cycle that is not ܥସ;  
(2) There exists a cycle that is not an end-block;  
(3) There exists a cut edge that is not a pendent edge. 

Lemma 5.1. Let ܩ ∈ ࣝ(݉, ,݉)଴ࣝ}\(ݐ ݉ with {(ݐ ≥ 10, ݉ ≥ ݐ4  and there exists a cycle 
that is not ܥସ. Then 

(1) If ܩ  has odd cycle, then ݋ܯ௘(ܩ) ≤ ݉ଶ − 2݉ − ݐ12 + 9 with equality if and only if 
ܩ ≅ ,௠(3ܩ 4, 4, … ,4 ᇣᇧᇧᇤᇧᇧᇥ

௧ିଵ
); 

(2) If all cycle of ܩ are even, then ݋ܯ௘(ܩ) ≤ ݉ଶ −݉− ݐ12 − 18 with equality if and only 
if ܩ ≅ ,௠(6ܩ 4, 4, … ,4 ᇣᇧᇧᇤᇧᇧᇥ

௧ିଵ
). 

Proof. (1) If ܩ has odd cycle, then ݎ ≥ 1. By Lemma 4.2 and Thereom 4.3, we have that 
(ܩ)௘݋ܯ ≤ ݂(݃ଵ,݃ଶ, … ,݃௧) ≤ (3, 3, … ,3ᇣᇧᇤᇧᇥ

௥
, 4, 4, … ,4ᇣᇧᇤᇧᇥ

௧ି௥
) ≤ (3, 4, 4, … ,4 ᇣᇧᇧᇤᇧᇧᇥ

௧ିଵ
) 

                                                                                                      = ݉ଶ − 2݉ − ݐ12 + 9, 
with equality if and only if ܩ ≅ ,௠(3ܩ 4, 4, … ,4 ᇣᇧᇧᇤᇧᇧᇥ

௧ିଵ
). 

(2) If all cycle of ܩ are even, then ݎ = 0. By Lemma 4.2 and Thereom 4.3, we have that 
(ܩ)௘݋ܯ ≤ ݂(݃ଵ,݃ଶ, … ,݃௧) ≤ ݂(6, 4, 4, … ,4 ᇣᇧᇧᇤᇧᇧᇥ

௧ିଵ
) = ݉ଶ −݉ − ݐ12 − 18 with equality if and 

only if ܩ ≅ ,௠(6ܩ 4, 4, … ,4 ᇣᇧᇧᇤᇧᇧᇥ
௧ିଵ

). The proof is completed.                                                        ∎ 

Lemma 5.2. Let ܩ ∈ ࣝ(݉, ,݉)଴ࣝ}\(ݐ ݉ with {(ݐ ≥ 10, ݉ ≥ ݐ4  and there exists a cycle 
that is not an end-block. Then ݋ܯ௘(ܩ) ≤ ݉ଶ − 2݉− ݐ12 + 9 or ݋ܯ௘(ܩ) ≤ ݉ଶ −݉ −
ݐ12 − 2. 

Proof. If there exists a cycle that is not ܥସ, then by Lemma 5.1, one knowns that ݋ܯ௘(ܩ) ≤
݉ଶ − 2݉− ݐ12 + 9 or ݋ܯ௘(ܩ) ≤ ݉ଶ −݉ − ݐ12 − 18. In the following, we assume that 
all cycles are ܥସ and ܥ =   .ଵis not an end-blockݒସݒଷݒଶݒଵݒ



104                                                                                                                            LIU, SONG, XIAO AND TANG 

 

(1)  If ݀(ݒଵ) ≥ 3 and ݀(ݒଶ) ≥ 3, then 
∑ ߶(݁) ≤ 2(݉− 4) + 2(݉− 6) = 4݉ − 20௘∈ா(஼) . 

(2) If ݀(ݒଵ) ≥ 3 and ݀(ݒଷ) ≥ 3, then ∑ ߶(݁) ≤ 4(݉− 6) = 4݉ − 24 < 4݉ − 20௘∈ா(஼) . 
Then  

(ܩ)௘݋ܯ ≤ (݉− 1)(݉− (ݐ4 + 4(݉− ݐ)(4 − 1) + 4݉− 20 
                                      = ݉ଶ −݉ − ݐ12 − 4 
                                      < ݉ଶ −݉ − ݐ12 − 2. 
The proof is completed.                                                                                                         ∎ 

 
Lemma 5.3. Let ܩ ∈ ࣝ(݉, ,݉)଴ࣝ}\(ݐ ݉ with {(ݐ ≥ 10, ݉ ≥  and there exists a cut edge ݐ4
that is not a pendent edge. Then ݋ܯ௘(ܩ) ≤ ݉ଶ −݉ − ݐ12 − 2 with equality if and only if 
ܩ ≅ ࣝଵ(݉,  .(ݐ

Proof. Suppose that ݁ = ݒݑ  is a cut edge that is not a pendent edge. Then 1 ≤
݉௨(݁),݉௩(݁) ≤ ݉ − 2,  such ߶(݁) ≤ ݉ − 3 with equality if and only if one component of 
ܩ − ݁ contains a single edge.By Lemma 4.2 and Theorem 4.3, we have that 
(ܩ)௘݋ܯ                     ≤ ݉ − 3 + (݉− 1)൫݉ − ∑ ݃௝௧

௝ୀଵ − 1൯ 
                                   +∑ (݃௝௥

௝ୀଵ − 1)(݉− ݃௝) + ∑ ݃௝௧
௝ୀ௥ାଵ (݉ − ݃௝) 

                           = ݂(݃ଵ,݃ଶ, … ,݃௧) − 2 
                            ≤ ݂(3, 3, … ,3ᇣᇧᇤᇧᇥ

௥
, 4, 4, … ,4ᇣᇧᇤᇧᇥ

௧ି௥
) −2 

                           = ݉ଶ −݉ − ݐ12 − −݉)ݎ 9)− 2 
                           = −(ݎ)ܪ 2 ≤ (0)ܪ − 2 
                           = ݉ଶ −݉ − ݐ12 − 2  

with equality if and only if all cycles are ܥସ and end-block, ݁ =  is the only cut edge that ݒݑ
is not a pendent edge, one component of ܩ − ݁ containing a single edge, i.e. ܩ ≅ ࣝଵ(݉,   .(ݐ
The proof is completed.                                                                                                         ∎ 
 

By Lemma 5.1, 5.2, 5.3, we have the main result. 

Theorem 5.4. Let ܩ ∈ ࣝ(݉, ,݉)଴ࣝ}\(ݐ ݉ with {(ݐ ≥ 10, ݉ ≥ ݐ4 > 0.Then 

(ܩ)௘݋ܯ (1) ≤ 89 − ݉ for ݐ12 = 10 with equality if and only if ܩ ≅ ,3)ܩ 4, 4, … ,4 ᇣᇧᇧᇤᇧᇧᇥ
௧ିଵ

). 

(ܩ)௘݋ܯ (2) ≤ 108− ݉ for ݐ12 = 11 with equality if and only if ܩ ≅ ,3)ܩ 4, 4, … ,4 ᇣᇧᇧᇤᇧᇧᇥ
௧ିଵ

) or 

ܩ       ≅ ࣝଵ(݉,  .(ݐ

(ܩ)௘݋ܯ (3) ≤ ݉ଶ −݉ − ݐ12 − 2 for ݉ ≥ 12 with equality if and only if  ܩ ≅ ࣝଵ(݉,  .(ݐ
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Let Θ௔,௕,௖  be the Theta graph which is consisted by the three internally disjoint paths 
௔ܲ , ௕ܲ , ௖ܲ  of lengths ܽ, ܾ, ܿ, respctively. If the bicyclic graphs are cacti, then through the 

results of Theorem 4.3 and 5.4, we can get the extremal graph. If there exists the Theta 
graph among bicyclic graphs, then we have the following conjectures. 
 

 
Figure 3. The extremal bicyclic graphs ܩଵ and ܩଶ. 

 
Conjecture 5.5. If the size ݉ of bicyclic graphs is large enough, then Θ௠ିସ,ଶ,ଶ  has the 
minimum edge Mostar index. 

Conjecture 5.6. If the size ݉ of bicyclic graphs is large enough, then the bicyclic graphs 
 .ଶ (see Figure 3) have the maximum edge Mostar indexܩ ଵ andܩ
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