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 ABSTRACT In this paper ,  we introduce fractional-order into a model of HIV1 infection of 
CD4+ Tcells .  We study the effect of   the changing the average number of viral particles N 
with different sets of initial conditions on the dynamics of   the presented model .   The 
nonstandard finite difference (NSFD) scheme is implemented   to examine the dynamic 
behaviors in the fractional-order HIV-1   infection model.    Numerical results show that the 
  NSFD approach is simple and accurate for solving fractional-order HIV-1   infection model. 

KEYWORDS HIV1 model •  n onstandard finite difference scheme • fractional differential 
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1. INTRODUCTION 

 Human immune deficiency virus (HIV) is a lenti virus (a   member of the retro virus family) 
that causes acquired   immuno deficiency syndrome (AIDS) ,  a condition in   humans in which 
the immune system begins to fail ,  leading to   life-threatening opportunistic infections .  HIV 
infects primarily   vital cells in the human immune system such as helper T-cell   (to be 
specific ,  CD4ା T-cell) ,  macrophages ,  and dendritic   cells .  When CD4ା T-cell numbers 
decline below a critical   level ,  cell-mediated immunity is lost and the body becomes 
  progressively more susceptible to opportunistic infections . 

The HIV epidemic is widely acknowledged to be the most severe health crisis of 
modern times .  HIV continues to spread  at alarming rates through many parts of the world , 
 and there have been few victories in the efforts to contain it .  This is  true despite remarkable 
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advances in our understanding of the molecular biology of the virus and its effects on the 
body   advances that have led to major therapeutic discoveries in the second decade of the 
epidemic .  For those who are able to  obtain treatment with antiretroviral drugs ,  HIV 
infection has been transformed from a fatal illness into a chronic condition .  This has led to 
dramatic reductions in mortality and morbidity from the illness .  However ,  despite these 
advances on the   biomedical front ,  the epidemic continues to spread and treatment remains 
unavailable to the overwhelming majority of   those who require it .   

It causes destruction of millions of people and expenditure of enormous amount of 
money in research and healthcare .  Though ,  on the medical frontier there have been many 
advances ,  but still there is no effective cure or vaccine available   for HIV .  It is ,  therefore , 
 essential that sufficient attention must be paid to study the dynamics of this fatal disease to   
subsequently control its spread .  Mathematical   models have been proven valuable in 
understanding the   dynamics of HIV infection [9,14,17] .  Many researchers discussed on this 
models . 

In [12] Perelson was developed   a simple model for the primary infection with HIV . 
 This model has been important in the field of mathematical   modeling of HIV infection ,  and 
many other models   have been proposed ,  which take this model as their   inspiration .  Perelson 
et al .  extended the model in [13]   and discussed some behavior of the model.  They   defined 
the model by considering four categories :  uninfected   CD4ାT-cells ,  latently infected CD4ା 
T-cells ,  productively   infected CD4ା T-cells and virus population . 

 Rong et al .  [16] modified the model further by incorporating   anti-retroviral effects 
to study the evolution of drug   resistance .  They considered three classes of CD4ା  T-cells : 
 uninfected cells ,  infected cells in eclipse phase   and productively infected cells .  The model 
depends on   the observation that for a virus ,  when it enters a resting   CD4ା T-cell ,  viral 
RNA may not be completely reverse   transcribed into DNA .  In [5] Haiping modified the 
system of ordinary differential equations (ODEs) model proposed by Culshaw and Ruan [3] 
into a system   of fractional-order .  They showed that the   model established in this paper 
possesses non-negative   solutions ,  as desired in any population dynamics .  They   obtained a 
restriction on the number of viral particles   released per infectious cell ,  in order for infection 
to be   sustained .  Following Rong et al. ,  we assume here that a   fraction of infected CD4ା T-
cells return to the uninfected   class .  In view of this ,  the following model is proposed : 
 

ܶᇱ = ݏ − ܸ݇ܶ − ݀ܶ + ܾܶ∗,                                                                 
ܶ∗ᇱ = ܸ݇ܶ − (ܾ +  (1)                                                                ,∗ܶ(ߜ
ܸᇱ = ∗ܶߜܰ − ܸܿ,                                                                                     

    with initial conditions : 
 

ܶ(0) = ଴ܶ,             ܶ∗(0) = ଴ܶ
∗,                 ܸ(0) = ଴ܸ . 
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 In this model , ܶ,   ܶ ∗ and  ܸ denote the concentration of   uninfected CD4ା cells ,  infected 
CD4ା T-cells and free   HIV virus particles in the blood ,  respectively . The parameters stand 
for the inflow rate of CD4ା T-cells and ݀ its natural death rate .  The parameter ݇  represents 
the rate of infection of T-cells ,  ߜ represents death rate of infected T-cells and includes the 
possibility of death by bursting of infected T-cells ,  hence ߜ ≥ ݀. The factor  ܾ  is the rate at 
which infected cells return to uninfected class . In addition,  ܿ presents the death rate of virus 
and ܰ is the average number of viral   particles produced by an infected cell . 

This paper is organized as follows :  In the next section , we elaborate some basic 
definitions and   properties of the Grunwald-Letnikov (GL) approximation and provides a 
brief overview of the important features of the procedures for constructing NSFD schemes 
for systems of ODEs .  In Section 3 ,  we introduce fractional-order into the   model that 
describes HIV-1 infection of CD4ା T-cells and also stability theorem and   Routh-Hurwitz 
stability conditions are given for the local   asymptotic stability of the fractional systems .  In 
Section 4 ,  we will discuss the stability analysis of fractional system .  In Section 5 ,  we   
present the idea of NSFD scheme for solving the fractional-order HIV-1 infection of CD4ା 
T-cells model .  Finally in the last section ,  numerical results demonstrate that the   NSFD 
approach is easy to be implemented and accurate when applied to  the  fractional-order 
HIV1 infection model. 
 

2. PRELIMINARIES AND NOTATIONS 

 In this section ,  some basic definitions and properties of the   fractional calculus theory and 
nonstandard discretization are   discussed . 
 
2.1 Fundamentals of Fractional-Order 

Fractional differential equations (FDEs) have gained considerable importance due to their 
applications in various   sciences ,  such as physics ,  mechanics ,  chemistry and engineering 
[15] .  In the recent years ,  the dynamic   behaviors of fractional-order differential systems 
have received increasing attention .  Although the concept of the fractional calculus was 
discussed   in the same time interval of integer-order calculus ,  the complexity   and the lack of 
applications postponed its progress till   a few decades ago .  Recently ,  most of the dynamical 
systems   based on the integer-order calculus have been modified into   the fractional-order 
domain due to the extra degrees of freedom   and the flexibility which can be used to 
precisely fit the experimental data much better than the integer-order modeling . 
 
2.2 GL Approximation 

The GL method of approximation for the   one-dimensional fractional derivative is as 
follows [15] : 
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(ݐ)ݔఈܦ = ݂൫ݐ, (0)ݔ           ,൯(ݐ)ݔ = ݐ            ,଴ݔ ∈ ൣ0, ௙ݐ ൧,                             (2) 

(ݐ)ݔఈܦ = lim
௛→଴

ℎିఈ ෍(−1)௝ ቀ
ߙ
݆ ቁ ݐ)ݔ − ݆ℎ),

[
೟೑
೓ ]

௝ୀ଴

 

 where 0 < ߙ < ఈ denotes the fractional derivative, ℎ  is the step size and ቂ௧೑ܦ  , 1

௛
ቃ   

represents the integer part of  
௧೑

௛
 .  Therefore ,  Eq .  (2) is discretized in the next form, 

 

෍ ௝ܿ
ఈݔ௡ି௝ = ,௡ݐ)݂        ,(௡ݔ

௡

௝ୀ଴

             ݊ = 1, 2, 3, … 

 
 where ݐ௡ = ݊  ℎ and   ௝ܿ

ఈ  are the GL coefficients   defined as : 
 

௝ܿ
ఈ = ൬1 −

1 + ߙ
݆ ൰ ௝ܿିଵ

ఈ ,           ܿ଴
ఈ = ℎିఈ ,           ݆ = 1, 2, 3, … 

 
2.3 NSFD Discretization 

The initial foundation of NSFD schemes came from the exact finite   difference schemes . 
These schemes are well developed by Mickens [10 ,  11] in the past   decades .  These schemes 
are developed for compensating the weaknesses such as numerical instabilities that may be 
caused   by standard finite difference methods .  Regarding the positivity ,  boundedness and 
monotonicity of solutions ,  NSFD schemes have a better performance over the standard 
finite difference schemes ,  due to its flexibility to construct a NSFD scheme that can 
preserve certain properties and structures ,  which are obeyed by the original equations .  
  The advantages of NSFD schemes have been shown in many   numerical 
applications .  González-Parra et al .  [4] and Arenas et al .  [2] developed NSFD schemes   to 
solve population and biological models .  Jordan [6] constructed NSFD schemes for heat 
transfer problems . We now give an outline of the critical points which will allow the 
construction of NSFD discretizations for ODEs . Consider the autonomous ODE given by   

ݔ ᇱ = (0)ݔ            ,(ݔ)݂ = ݐ       ,଴ݔ ∈ ൣ0,               ,௙൧ݐ
 where  ݂  ,For a discrete-time grid with step size . ݔ  is, in general, a nonlinear function of  (ݔ)
ݐ∆  = ℎ,  we replace the independent variable  ݐ  by  
 

ݐ ≈ ௡ݐ = ݊ℎ,                  ݊ = 0, 1, 2, … , ܰ 
where  ℎ = ௧೑

ே
 .  The dependent variable (ݐ)ݔ  is replaced by 

(ݐ)ݔ ≈  ,௡ݔ
 where  ݔ௡  is the approximation of  ݔ(ݐ௡) . 
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  The first NSFD requirement is that the dependent functions should be modeled 
nonlocally on the discrete–time computational   grid .  Particular examples of this include the 
following functions [10, 11]. 
 

⎩
⎪
⎨

⎪
⎧

ݕݔ ≈ ௡ݕ௡ାଵݔ2 − ,௡ାଵݕ௡ାଵݔ

ଶݔ ≈                           ,௡ݔ௡ାଵݔ

ଷݔ ≈ ൬
௡ାଵݔ + ௡ିଵݔ

2 ൰ ௡ݔ
ଶ.      

� 

 
 A standard way for representing a discrete first-derivative is given by 

ݔ ᇱ ≅
௡ାଵݔ − ௡ݔ

ℎ . 

 However ,  the NSFD scheme requires that ݔᇱ has the more general representation  

ݔ ᇱ ≅
௡ାଵݔ − ௡ݔ

∅(ℎ) ,
 

 where the denominator function , i.e.  ∅  has the properties: 
 
(݅) ∅(ℎ) = ℎ + ܱ(ℎଶ),                                                                                                                            
(݅݅) ∅(ℎ)  ݂݅݋ ݊݋݅ݐܿ݊ݑ݂ ݃݊݅ݏܽ݁ݎܿ݊݅ ݊ܽ ݏ ℎ,                                                                                     
(݅݅݅) ∅(ℎ) ݉ܽݐ ݊݋ ݀݊݁݌݁݀ ݕℎ݁ ݐ ݊݅ ݃݊݅ݎܽ݁݌݌ܽ ݏݎ݁ݐ݁݉ܽݎܽ݌ℎ݁ ݂݂݀݅݁ݏ݊݋݅ݐܽݑݍ݁ ݈ܽ݅ݐ݊݁ݎ. 
 
  The paper of Mickens [11] gives a general procedure for determining ∅(ℎ) for 
systems of ODEs .  An example of the NSFD discretization process is its application to the 
decay equation  

ᇱݔ =  ݔߣ−
 where λ is a constant .  The discretization scheme [11]  is 

௡ାଵݔ − ௡ݔ

∅
= ௡ݔߣ− ,                       ∅(ℎ, (ߣ =

1 − ݁ିఒ௛

ߣ
. 

 Another example is given by 
ᇱݔ = ݔଵߣ − ଶݔଶߣ , 

 where the NSFD scheme is  
௡ାଵݔ − ௡ݔ

∅ = ௡ݔଵߣ − ௡ݔ௡ାଵݔଶߣ ,                       ∅(ℎ, (ଵߣ =
݁ఒభ௛ − 1

ଵߣ
. 

 It should be noted that the NSFD schemes for both ODEs are exact in the sense that 
௡ݔ = for all applicable values   of ℎ  (௡ݐ)ݔ > 0 .  In general ,  for an ODE with polynomial 
terms, 
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ݔ ᇱ = ݔܽ + ܮܰ                      ,(ܮܰ) ≡  ݏ݉ݎ݁ݐ ݎ݈ܽ݁݊݅݊݋݊
 

 the NSFD discretization for the linear expressions is derived by Mickens [11]   
௡ାଵݔ − ௡ݔ

∅
= ௡ݔܽ +   ,௡(ܮܰ)

 where the denominator function is  

 ∅(ℎ, ܽ) =
݁௔௛ − 1

ܽ . 

 It follows that if ݔᇱ  is a function of ݔ which does not have a linear term ,  then the 
denominator function would  be just ℎ ,  i.e.  ∅(ℎ) = ℎ .  By applying  this technique and using 
the GL discretization  method ,  it yields the following relations : 
 

௡ାଵݔ =
− ∑ ௝ܿ

ఈݔ௡ାଵି௝ + ௡ାଵݐ)݂ , ௡ାଵ)௡ାଵݔ
௝ୀଵ

ܿ଴
ఈ ,           ݊ = 0, 1, 2, … 

 where     ܿ଴
ఈ = ∅(ℎ)ିఈ . 

 
3. FRACTIONAL-ORDER HIV1 INFECTION EPIDEMIC MODEL 

In this section, we introduce fractional-order into the model (1) of   HIV-1 infection of the 
CD4ା T-cells .  The new system is   described by the following set of fractional ODEs of 
order αଵ, ,ଶߙ   :ଷߙ
 

ఈభܶܦ = ݏ − ܸ݇ܶ − ݀ܶ + ܾܶ∗,                             
∗ఈభܶܦ = ܸ݇ܶ − (ܾ +  (3)                                                                    ,∗ܶ(ߜ
ఈభܸܦ = ∗ܶߜܰ − ܸܿ,                                                                                         
0 < ௜ߙ ≤ 1,                                           ݅ = 1, 2, 3 

 
 with initial conditions  

ܶ(0) = ଴ܶ,             ܶ∗(0) = ଴ܶ
∗,                 ܸ(0) = ଴ܸ . 

 In order to analyze the stability of the model ,  stability theorem on fractional-order systems 
and fractional Routh-Hurwitz stability conditions for fractional-order differential equations 
are introduced .  The   first stability theorem has been given for fractional-order systems. 
 
Theorem 1. [8] Consider the following fractional-order system : 
 

ݔఈܦ                                          = (0)ݔ      ,(ݔ)݂ = ଴ݔ ,                                                          (4) 
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where 0 < ߙ ≤ 1 and ݔ ∈ ܴ௡ .  The equilibrium points of system Eqs .  (4) are calculated by 
solving the   equation  ݂(ݔ) = 0 . These points are locally asymptotically stable if all 

eigenvalues ߣ of the Jacobian matrix   ܬ = డ௙
డ௫

  evaluated at the equilibrium point satisfy : 

|arg (ߣ)| >
ߨߙ
2 . 

The Jacobian matrix ܬ system Eqs .  (3) of the   equilibrium point ܧ = (ܶ, ܶ∗, ܸ)  is 
computed as  

(ܧ)ܬ                       = ൭
−ܸ݇ − ݀ ܾ −݇ܶ

ܸ݇ −ܾ − ߜ ݇ܶ
0 ߜܰ −ܿ

൱,                                                                 (5) 

  
 the existence and local stability conditions of this equilibrium point ܧ is as follows . 
Suppose that ܦ(ܲ) denotes the discriminant of a polynomial ܲ 

 
(ߣ)ܲ                                  = ଷߣ + ܽଵߣଶ + ܽଶߣ + ܽଷ = 0,                                                          (6) 

 and  
(ܲ)ܦ = 18ܽଵܽଶܽଷ + (ܽଵܽଶ)ଶ − 4ܽଷ(ܽଵ)ଷ − 4(ܽଶ)ଷ − 27(ܽଷ)ଶ, 

 
 using the results of [1] we have the following   Routh-Hurwitz stability conditions for FDEs: 
   (i) If ܦ(ܲ) > 0 ,  then the necessary and sufficient condition   for the equilibrium point ܧ ,  to 
be locally   asymptotically stable ,  is  ܽଵ > 0,   ܽଷ > 0,    ܽଵܽଶ − ܽଷ > 0. 
  (ii) If ܦ(ܲ) < 0 ,   ܽଵ ≥ 0, ܽଶ ≥ 0,  ܽଷ > 0,   then the equilibrium point    ܧ is locally 
asymptotically stable for  α < ଶ

ଷ
 .  Also ,  if  

(ܲ)ܦ < 0,     ܽଵ < 0,       ܽଶ < ߙ     ,0 >
2
3

, 

then all   roots of Eq .  (6) satisfy the condition  |arg (ߣ)| < ఈగ
ଶ

. 
  (iii) If   ܦ(ܲ) < 0,    ܽଵ > 0,    ܽଶ > 0,    ܽଵܽଶ − ܽଷ = 0,   then the equilibrium point   ܧ is 
locally asymptotically stable for all  ߙ ∈ [0,1). 
 (iv) The necessary condition for the equilibrium point  ܧ ,  to be locally asymptotically stable , 
 is ܽଷ > 0. 
   

In the next section, we discuss the asymptotic stability of the equilibrium point ܧ of 
the system Eqs .  (3) . 

 
4. STABILITY ANALYSIS OF THE MODEL 
 
To evaluate the equilibrium points of system Eqs .  (3) ,  let 
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ݏ                             − ܸ݇ܶ − ݀ܶ + ܾܶ∗ = 0,                                   
   ܸ݇ܶ − (ܾ + ∗ܶ(ߜ = 0 ,  
∗ܶߜܰ                − ܸܿ = 0.    

 

  Then the equilibrium points are ܧ଴ = ቀ௦
ௗ

, 0,0ቁ  and  ܧଵ( ෨ܶ , ܶ∗෪, ෨ܸ )  for  ܴ଴ > 1,  where  
 

෨ܶ =
(ܾ + ܿ(ߜ

݇ߜܰ ,              ܶ∗෪ =
ݏ
ߜ ൬

ܴ଴ − 1
ܴ଴

൰,            ෨ܸ =
∗ܶߜܰ

ܿ , 

 
 and the basic reproduction number of system Eqs .  (3) is  

ܴ଴ =
ݏ݇ߜܰ

ܿ݀(ܾ +  .(ߜ

 The local stability conditions of these equilibrium points are as follows. 
  (i) The Jacobian matrix (5) at the equilibrium point  ܧ଴ = (௦

ௗ
, 0 ,0) is  

ܬ ቀ
ݏ
݀ , 0 ,0ቁ =

⎝

⎜
⎛

−݀ ܾ −
ݏ݇
݀

0 −ܾ − ߜ
ݏ݇
݀

0 ߜܰ −ܿ ⎠

⎟
⎞

 , 

 with the characteristic equation  
 

(ߣ)ܲ = ଷߣ + ܽଵߣଶ + ܽଶߣ + ܽଷ = 0,    
 where  
 

ܽଵ = ܿ + ܾ + ߜ + ݀,               ܽଶ = −
ߜܰ݇ݏ − ܾܿ݀ − ߜ݀ܿ − ܿ݀ଶ − ݀ଶܾ − ݀ଶߜ

݀ , 
 ܽ ଷ = ߜܰ݇ݏ− + ܾܿ݀ +                                                                                               .ߜ݀ܿ

 
 Theorem 2. Assume that ଵ

ଶ
< ܴ଴ < 1.  Then the disease free equilibrium point ܧ଴ of system 

Eqs .  (3) is asymptotically stable for all α . 
 
 Proof. Since ܴ଴ < 1,  hence ܽଷ > 0.  Moreover  
 

ܽଵܽଶ − ܽଷ = −
(ܾ + ߜ + ܿ)(−݀ଶܾ − ܾܿ݀ − ߜ݀ܿ + ߜܰ݇ݏ − ݀ଶߜ − ݀ଷ − ܿ݀ଶ)

݀ > 0. 

 Now if  ଵ
ଶ

< ܴ଴ < 1 then  

(ܲ)ܦ =
ߜܰ݇ݏ4) − ߜ2ܿ݀ − 2ܾܿ݀ + ଶߜ݀ + ߜ2ܾ݀ + ܿଶ݀ + ܾ݀ଶ)ߤଶ

݀ଷ > 0, 

where  
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ߤ = ߜܰ݇ݏ − ܾܿ݀ − ߜ݀ܿ + ݀ଶߜ − ݀ଷ + ܿ݀ଶ + ݀ଶܾ. 
 
 Since ܽଵ > 0,  hence all inequalities part (i) of the fractional Routh-Hurwitz conditions are   
satisfied .  Therefore ,  if  ଵ

ଶ
< ܴ଴ < 1  then the disease free equilibrium point ܧ଴ is locally 

asymptotically stable for all ߙ.                                                                                               
  
(ii) The Jacobian matrix (5) at the equilibrium point ܧଵ( ෨ܶ , ܶ∗෪, ෨ܸ ) is  
 

൫ܬ ෨ܶ , ܶ∗෪, ෨ܸ ൯ =

⎝

⎜
⎛

−
଴ܴܰ݇ݏ − ܰ݇ݏ + ܴ݀ܿ଴

ܴܿ଴
ܾ −

ܿ(ܾ + (ߜ
ߜܰ

଴ܴ)ݏܰ݇ − 1)
ܴܿ଴

−ܾ − ߜ
ܿ(ܾ + (ߜ

ߜܰ
0 ߜܰ −ܿ ⎠

⎟
⎞

, 

 
 with the characteristic equation  

(ߣ)ܲ = ଷߣ + ܽଵߣଶ + ܽଶߣ + ܽଷ = 0,    
 where  

ܽଵ =
଴ܴ)ܰ݇ݏ − 1) + ܴ݀ܿ଴ + ܴ଴ܿߜ + ܿଶܴ଴ + ܴܿ଴ܾ

ܴܿ଴
, 

ܽଶ =
଴ܴ)ߜܰ݇ݏ − 1) + ଴ܴ)ܰ݇ݏ − 1) + ܴ݀ܿ଴ܾ + ܴ݀ܿ଴ߜ + ݀ܿଶܴ଴

ܴܿ଴
, 

ܽଷ =
଴ܴ)ߜܰ݇ݏ − 1)

ܴ଴
.                                                        

 Observe that if  ܴ଴ > 1 then  ܽଵ > 0,   ܽଶ > 0  and ܽଷ > 0. 
 
5. NSFD DISCRETIZATION FOR FRACTIONALORDER HIV1 INFECTION 
MODEL 
 
By system Eqs .  (3) and applying Mickens scheme by replacing the step size ℎ by a function 
∅(ℎ) and using the GL discretization   method ,  it can be seen that: 

෍ ௝ܿ
ఈభ

௡ܶାଵି௝ = ݏ − ݇ ௡ܶାଵ ௡ܸ − ݀ ௡ܶାଵ + ܾ ௡ܶ
∗,                                                                (7)

௡ାଵ

௝ୀ଴

 

෍ ௝ܿ
ఈమ

௡ܶାଵି௝
∗

௡ାଵ

௝ୀ଴

= ݇ ௡ܶାଵ ௡ܸ − (ܾ + (ߜ ௡ܶାଵ
∗ ,                                                                           (8) 

෍ ௝ܿ
ఈయ

௡ܸାଵି௝

௡ାଵ

௝ୀ଴

= ߜܰ ௡ܶାଵ
∗ − ܿ ௡ܸାଵ .                                                                                  (9) 
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  Comparing Eqs .  (7)(9) with system Eqs .  (3) ,  we note the following statements: 
1.    The linear and nonlinear terms on the right-hand side of first equation in system (3) 

are in the form  
−ܸܶ ≈ − ௡ܶାଵ ௡ܸ ,                    − ܶ ≈ − ௡ܶାଵ ,                          ܶ∗ ≈ ௡ܶ

∗. 
 

2.   The linear and nonlinear terms on the right-hand side of second equation in (3) are:  
ܸܶ ≈ ௡ܶାଵ ௡ܸ ,                               − ܶ∗ ≈ − ௡ܶାଵ

∗ . 
3.   The linear terms on the right-hand side of third equation system (3) are : 

ܶ∗ ≈ ௡ܶାଵ
∗ ,                             − ܸ ≈ − ௡ܸାଵ. 

Invoking some algebraic manipulations on Eqs .  (7)(9), the following relations are 
obtained: 
 

௡ܶାଵ =
− ∑ ௝ܿ

ఈభ
௡ܶାଵି௝ + ݏ + ܾ ௡ܶ

∗௡ାଵ
௝ୀଵ

ܿ଴
ఈభ + ݀ + ݇ ௡ܸ

, 

 

௡ܶାଵ
∗ =

− ∑ ௝ܿ
ఈమ

௡ܶାଵି௝ 
∗௡ାଵ

௝ୀ଴ + ݇ ௡ܶାଵ ௡ܸ

ܿ଴
ఈమ + ܾ + ߜ

, 

 

௡ܸାଵ =
− ∑ ௝ܿ

ఈయ
௡ܸାଵି௝ + ߜܰ ௡ܶାଵ

∗௡ାଵ
௝ୀଵ

ܿ଴
ఈయ + ܿ

, 

  
 where  

ܿ଴
ఈభ = ∅ଵ(ℎ)ିఈభ ,                ܿ଴

ఈమ = ∅ଶ(ℎ)ିఈమ ,               ܿ଴
ఈయ = ∅ଷ(ℎ)ିఈయ ,          

  
 by [18]  

∅ଵ(ℎ) =
݁ௗ௛ − 1

݀ ,                   ∅ଶ(ℎ) =
݁(ఋା௕)௛ − 1

ߜ) + ܾ) ,                      ∅ଷ(ℎ) =
݁௖௛ − 1

ܿ . 

 
 
6. NUMERICAL RESULTS 

 Analytical studies always remain incomplete without numerical verification of the results . 
 In this section ,  we present numerical simulation to illustrate the results obtained in previous 
sections .  Now we solve the fractional-order HIV-1 infection epidemic model in two cases . 
 The approximate solutions are displayed in Figures   14  , for different  0 < ௜ߙ ≤ 1  and 
݅ = 1, 2, 3. 
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Case 1 .  We exploited the following data set : ݏ = 10, ܾ = 0.2, ݇ = 0.000024, ݀ = 0.01, 
ߜ = 0.16 , ܿ = 3.4 and ܰ = 1000.  For this set of   data  ܴ଴ = 3.137 > (ܲ)ܦ ,1 = −4.868  
and  

ܽଵ = 3.818,                        ܽଶ = 0.208,                  ܽଷ = 0.026, 
 

 with   ܽଵܽଶ − ܽଷ = 0.771.  Thus ,  the disease free equilibrium point ܧଵ  is locally 
asymptotically stable for  ߙ < ଶ

ଷ
. It can be verified that the system goes to infected steady 

state  (318.75, 42.57, 2003.9).  The results are depicted   in Figures  1 and 2 for the initial 
conditions in the first case   study are   ܶ(0) = 1000, ܶ∗(0) = 0, ܸ(0) = 0.001  with 
simulation time  5000ݏ and step size    ℎ = 1.1. 

 
Figure 1 .  The concentration of the uninfected CD4ା T-cells at ܰ = 1000 with step size 
ℎ = 1.1. 
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Figure 2 . The concentration of the free HIV virus particles at ܰ = 1000 with step size 
ℎ = 1.1. 
 
  
Case 2 .  We exploited the following data set :  ݏ = 10, ܾ = 0.2, ݇ = 0.000024, ݀ = 0.01, 
ߜ = 0.16, ܿ = 3.4  and ܰ = 1600.  For this set of   data   ܴ଴ = 5.019 > (ܲ)ܦ ,1 = −8.417  
and  

ܽଵ = 3.860,                                  ܽଶ = 0.359,                       ܽଷ = 0.049, 
 

 with   ܽଵܽଶ − ܽଷ = 1.338.  Thus , the disease free equilibrium point   ܧଵ  is locally  
asymptotically stable for ߙ < ଶ

ଷ
.  It can be verified that the system goes to infected steady 

state  (199.218, 3768.382, 50.048).  The results are depicted   in Figures   3 and 4 for the 
initial conditions in the second case   study are  ܶ(0) = 1000,  ܶ∗(0) = 10,   ܸ (0) = 10  with 
simulation time 3000ݏ and step size    ℎ = 1.5. 
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Figure 3 . The concentration of the uninfected CD4ା T-cells at ܰ = 1600 with step size 
ℎ = 1.5. 
 
 
7. CONCLUSION 

 In this paper we studied the fractional-order   HIV-1 infection model .  From   the obtained 
results in the presented figures ,  it turns out that in the primary stage of the infection with the 
(HIV)   virus ,  a dramatically decrease in the level of the CD4ା  T-cells occurs because of the 
death of such infected  cells .  On the other hand ,  the number of the free HIV   virus particles 
and the number of susceptible CD4ା T-cells increase .  This assumes that the growth of 
healthy   T-cells slows down during the course of  HIV infection . We have to give an 
attention to the parameter ܾ which  is called the reverting rate of infected cells to uninfected 
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  class due to non-completion of reverse transcription . Further ,  since only small fraction of 
infected cells will   revert back due to incompletion of reverse transcription ,  we expect the 
reverting rate ܾ to be small .  The basic   reproduction number of the presented model (3) is 
  given in as : 

ܴ଴ =
ݏ݇ߜܰ

ܿ݀(ܾ + (ߜ
. 

 

 
 
Figure4 . The concentration of the free HIV virus particles at ܰ = 1600 with step size 
ℎ = 1.5. 
 
It represents the average number of secondary infection   caused by a single infected T-cell 
in an entirely   susceptible T-cell population ,  through out its infectious   period .  For system 
(3) ,  if the basic reproduction number    ܴ଴ ≤ 1,  the virus is cleared and no HIV infection 
  persists .  If ܴ଴ > 1,  the HIV infection persists in   the T-cell population .  In the two presented 
cases ,  ܴ଴ = 3.137  when ܰ = 1000,  (see figures 1 - 2) and   ܴ଴ = 5.019 when ܰ = 1600 
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(see figures   3 -4) , the system goes to infected steady state .  From the definition of ܴ଴, it can 
be seen that ܴ଴ decreases as the  re verting rate ,  ܾ  of infected cells increases .  Hence ܴ଴   can 
be low for a high parametric value of ܾ.   Increasing   the value of ܰ will decrease the 
numbers of uninfected   CD4ା T-cells and increases the number of free virus  s ubstantially , 
 but does not change the stability of the   steady state .  The concentration of susceptible CD4ା 
T-cells ܶ(ݐ),  infected CD4ା T-cells (ݐ)ܫ,  and free HIV   virus particles ܸ(ݐ) in the blood 
have been obtained ,  therefore when ߙ → 1 the solution of the fractional  model 
(3),  ఈܶ(ݐ),   ఈܶ

,(ݐ)∗   ఈܸ(ݐ),    reduces to the standard   solution ܶ(ݐ), ,(ݐ)∗ܶ   Finally ,  the  (ݐ)ܸ
recent appearance   of fractional differential equations as models in some   fields of applied 
mathematics makes it necessary to   investigate methods of solution for such equations 
  (analytical and numerical) and we hope that this work   is a step in this direction . 
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