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In this paper, we introduce a new symmetric explicit four-step 
method with variable coefficients for the numerical solution of 
second-order linear periodic and oscillatory initial value problems 
of ordinary differential equations. For the first time in the literature, 
we generate an explicit method with the most important singularly 
P-stability property. The method is multiderivative and has 
algebraic order eight and infinite order of phase-lag. The numerical 
results for some chemical (e.g. orbit problems of Stiefel and Bettis) 
as well as quantum chemistry problems (i.e. systems of coupled 
differential equations) indicated that the new method is superior, 
efficient, accurate and stable.  
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1. INTRODUCTION  

In this paper, the numerical solution of the special second-order initial value problems with 
periodical and/or oscillating solutions of the form: 

ᇱᇱݕ = (ݔ)ݕ      ,(ݕ,ݔ) ݂ = (ݔ)ݕ      ,ݕ =  ,                                         (1)ݕ
is discussed where we assume that ݂ is sufficiently differentiable. These equations are used 
as the mathematical model for problems in celestial mechanics, physical chemistry, 
chemical physics, quantum mechanics, electronics, materials sciences and some others. 
Numerous problems such as chemical kinetics, orbital dynamics, orbital problem, circuit 
and control theory and Newton's second law applications involve second-order ODEs as 
discussed by [7,8,9]. 

The class of the above equations with oscillatory and/or periodic solutions (see 
[1,2]) deserves special attention. In the past decades, various classes of methods have been 
designed for solving Equation (1) numerically: Runge-Kutta, linear multistep, predictor-
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corrector, trigonometrically or exponentially methods [19,20]. One of the most important 
properties of the numerical methods for solving Equation (1) is the P-stability property; if a 
method has this property, then it is more suitable for solving Equation (1). 

In a paper [5], Lambert and Watson claimed that the P-stable methods must be 
implicit; explicit methods cannot be P-stable and all of the linear multistep P-stable 
methods are implicit. Of course, we know that the implicit methods are not applicable alone 
and to compute the implicit terms, it is required to use another suitable explicit method. In 
2003, Li and Wu [6] designed the explicit P-stable method that had nonlinear form. 
Following that, some modified explicit P-stable methods were presented but all of them had 
the same nonlinear structures [26,28,29]. But in this paper, for the first time in the 
literature, we develop a new explicit linear four-step method that has the most important P-
stability property. Firstly, since the new method is explicit, we do not need the other 
predictor method; thus it has less computational complexity in the numerical 
implementations. The other hand this method can be recognized as a suitable predictor 
method for other predictor-corrector methods. The other important point about the new 
method is that, with regard to its linear structure, it can be used directly in the vector form 
for solving differential equations systems and there is no need for vector product and 
quotient that was highly necessary to implement the nonlinear P-stable method of Li and 
Wu [6] etc. Generally, the solution of (1) is periodic, so it is expected that the results 
produced by some numerical methods be of the periodicity of the analytic solution. In 
1976, Lambert and Watson [5] proposed the concepts of periodicity interval and P-stability 
which can be used to discuss the stability of the numerical method for second-order initial 
value problems. Although many P-stable methods have been proposed, the earliest method 
to solve (1) numerically is the Numerov’s method. Recently, Shokri et al [10,18,22] have 
developed Obrechkoff type methods of various algebraic orders. The methods based on 
vanishing of phase-lag and some of its derivatives [21,24], Runge-Kutta methods 
[14,31,34], multistep methods [20,23], multiderivative methods [27], and hybrid methods 
[25,26] are some of the approaches that can be used for solving a second-order differential 
equation. We know that the numerical methods of second-order initial value problems are 
divided into two classes: The methods with constant coefficients and the methods with 
coefficients depending on the frequency of the problem. The new method is from the 
second class. The purpose of this paper is the construction of more efficient methods for the 
numerical solution of second-order initial value problems with highly oscillatory solutions. 
More specifically, the aim of this paper is to develop a new four-step predictor P-stable 
method which has the phase-lag and some of its derivatives equal to zero. 

 
2. BASIC THEORY 

For the numerical solution of the initial value problem (1), multistep methods of the form 
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∑ ܿ
ୀଵ ାݕ) + (ିݕ + ܿݕ = ℎଶൣ∑ ܾ( ݂ା + ݂ି) + ܾ ݂


ୀଵ ൧,          (2) 

with 2k steps can be used over the equally spaced intervals {ݔ}ୀି ∈ [ܽ,ܾ] and ℎ =
ାଵݔ| − ,|ݔ ݅ = −݇(1)݇ − 1. When the symmetric 2k-step method (2) is applied to the 
scalar test equation 

(ݔ)ᇱᇱݕ = −߱ଶ(3)                                                   ,(ݔ)ݕ 
a difference equation ܣ(ݒ)ݕ + ∑ ିݕ)(ݒ)ܣ + (ାݕ = 0

ୀଵ  is obtained, where ݒ = ߱ℎ, 
ℎ is the step length and ܣ(ݒ),ܣଵ(ݒ), …  are polynomials of v and hence the (ݒ)ܣ,
characteristic equation of (2) will be 
(ݒ)ܣ                                                      + ∑ ିݏ൫(ݒ)ܣ + ൯ݏ = 0.

ୀଵ  
 
Definition 2.1. The interval (0,ݒଶ) is called the periodicity interval of method (2) if the 
roots ߬, ݆ = 1, 2, … , 2݇, satisfy 

߬ଵ,ଶ = exp൫±݅(ݒ)ߠ൯ ,      ห ߬ห ≤ 1,    ݆ = 3, 4, … , 2݇,                         (4) 
where (ݒ)ߠ is a real function of ݒ. A method is called P-stable if its interval of periodicity 
is equal to (0,∞). 
 
Definition 2.2. A multistep method is called singularly almost P-stable if its interval of 
periodicity is equal to (0,∞) −S where S is a set of distinct points. 
 
Definition 2.3. The phase-lag error of method (2) is defined by ܲܮ = ݒ −  Then if the .(ݒ)ߠ
quantity ܲܮ = ݒ as(ାଵݒ)ܱ → ∞, the order of phase-lag is ݍ. 
 
Theorem 2.4. The symmetric 2k-step method (2) has phase-lag order ݍ and phase-lag 
constant c given by 

ାଶݒܿ− + (ାସݒ)ܱ = ∑ ଶ(௩) ୡ୭ୱ(௩)ାబ(௩)ೖ
సభ

∑ ଶೖ
సభ (௩)

                                    (5) 

Proof. See [32]. 
 
3. DEVELOPMENT AND ANALYSIS 

To solve numerically (1), we define explicit four-step, symmetric, multiderivative method 
of the form: 

ାଶݕ + ିଶݕ + ܽଵ(ݕାଵ + (ିଵݕ + ܽݕ = ℎଶ[ܾଵ( ݂ାଵ + ݂ିଵ) + ܾ ݂] 
                                                                     +ℎସ[ܿଵ(݃ାଵ + ݃ିଵ) + ܿ݃],          (6) 

where ݕᇱᇱ = ,ݔ)݂ (ସ)ݕ and (ݕ = ,Note that ܽ .(ݕ,ݔ)݃ ܾ and ܿ, j=0, 1 are six arbitrary 
parameters that must be calculated. Applying (6) to the scalar test Equation (3), one gets its 
difference and characteristic equations, respectively 
of the form 



20                                                                        MEHDIZADEH KHALSARAEI AND SHOKRI 

 

ାଶݕ)(ݒ)ଶܣ + (ିଶݕ + ାଵݕ)(ݒ)ଵܣ + (ିଵݕ + ݕ(ݒ)ܣ  =  0,                (7) 
where ܣ(ݒ) = ܽ + ଶݒ ܾ − ସܿݒ , ݅ = 0, 1, 2, where ݒ = ߱ℎ and 

ସߣ)(ݒ)ଶܣ + 1) + ଷߣ)(ݒ)ଵܣ + (ߣ + ଶߣ(ݒ)ଽܣ = 0.                                 (8) 

Now, if we assume that ܣଵ(ݒ) = 0, then (8) is reduced to ܣଶ(ݒ)(ߣସ + 1) +
ଶߣ+(ݒ)ܣ = 0. In addition, to calculate the phase-lag of the method (6), we apply the 
direct formula (5) for ݇ = 2 and for ܣ(ݒ), ݆ = 0(1)2. This leads to the following equation: 

ܮܲ = ିଶୡ୭ୱ(ଶ௩)ା൫ଶ௩రభିଶ௩మభିଶభ൯ ୡ୭ୱ(௩)ା௩రబି௩మబିబ
ଶ௩రభିଶ௩మభିଶభି଼

.                                  (9) 

In the new method (6), there are six arbitrary parameters that we have to calculate. 
To calculate these coefficients we produce a system of six equations as follow: 

൜
(ݒ)ଵܣ = 0  
()ܮܲ = 0, ݅ = 0(1)4

. 

Solving the above system will produce the coefficients of the new method. To save space, 
the formulas of the new method with their figures are shown in Appendix. But, for small 
values of |ݒ|, these coefficients may be subject to heavy cancellations. In this case, we 
should use the following Taylor series expansions: 
                            ܽ = −2 + ସ

ଷ
ଶݒ + ଵହସ

ଵଽ଼ସହ
ସݒ − ଷସହଷ଼

ଵଷହଶହ଼ହ
ݒ + ⋯, 

                            ܽଵ = − ଷଶ
ଷ
ଶݒ − ହଶ

ଵଽ଼ସହ
ସݒ + ଵଶ଼ସ

ଵଷହଶହ଼ହ
ݒ + ⋯,  

                            ܾ = ଵ଼଼
ଷ

− ଷଷଽଶ
ଷଽଽ

ଶݒ + ହଶଶ
ଶହହଵ

ସݒ + ଶଶଽସଷସହ
ଶଶହଶଷସଶଷ

ݒ −⋯, 

                            ܾଵ = ଷଶ
ଷ

+ ଼଼
ଷଽଽ

ଶݒ + ଷଽସ଼
ଵଷହଶହ଼ହ

ସݒ + ଵଷଷହହସହ଼
ଵଵଶଷଷଵଵହ

ݒ + ⋯, 

                            ܿ = ହଶସ
ଽସହ

− ଵଽହଶ
ହଽହଷହ

ଶݒ + ସଽସ଼ହ଼
ଶଶ଼଼ହ

ସݒ − ଶଽସଽସହ଼
ଵ଼ଽହହଶହ

ݒ + ⋯, 

                            ܿଵ = ଵଶ଼
ଽସହ

− ଽସସ
ହଽହଷହ

ଶݒ + ଵଷଵ
ଶଶ଼଼ହ

ସݒ − ଵଽଷହ଼
ଵ଼ଽହହଶ

ݒ + ⋯,  
where ݒ = ߱ℎ, and the local truncation error of the new method is 

௫ସ௦ܧܶܮ = ଽ
ହଽହଷହ

ℎଵൣ߱ଵݕ + (ଶ)ݕ5଼߱ + 10߱ݕ() + 10߱ସݕ() + 5߱ଶݕ(଼) +   ൧.   (10)(ଵ)ݕ
Since the new method is explicit, it is most important to show its stability property. In two 
ways, the singularly P-stability of the new method can be demonstrated: by its figure and 
the theorem. For this purpose, the application of the new method (6) to the scalar test 
equation 

ᇱᇱݕ = −߶ଶ(11)                                                  ,(ݔ)ݕ 
leads to the following difference equation 

,ݏ)ଶܣ ାଶݕ)(ݒ + (ିଶݕ + ାଵݕ)(ݒ,ݏ)ଵܣ + (ିଵݕ + ,ݏ)ܣ ݕ(ݒ = 0,            (12) 
where ܣ(ݒ,ݏ) = ଵ


బబ


,ݏ)ଵܣ, (ݒ = ଶ
ଷ
భబ


(ݒ,ݏ)ଶܣ, = 1 where ݒ = ߱ℎ, s=߶ℎ and ܣ, ݅ =0, 
1 and  

ܣ = ଶݒ))ସݒ + 3) cos(ݒ)ଶ + ଶݒ2 − 3),                                              (13) 
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ܣ              = ଼ݒ4) + ଶݏ8−) − ݒ(78 + ସݏ4) + ଶݏ60 +  ସݒ(27
ସݏ6−)+                     − ଶݒ(ଶݏ90 −  ସ(ݒ)ସ)cosݏ9
ସݒ5−)6)−                     + ଶݏ) + ଶ

ଶ
ଶݒ( − ଷ

ଶ
ݏ)((ଶݏ + ݏ)(ݒ)sinݒ(ݒ −  ଷ(ݒ)cos(ݒ

଼ݒ10−)+                     + ଶݏ20) + ݒ(135 + ସݏ10−) − ଶݏ222 +  ସݒ(9
ସݏ51)+                     + ଶݒ(ଶݏ90 +  ଶ(ݒ)ସ)cosݏ9
ݏ))48+                     + ସݒ−)(ݒ + ଶݏ) + ଶଵ

ଵ
ଶݒ( − ଽ

ଵ
ݏ)(ݒ)sinݒ(ଶݏ − (ݒ cos(ݒ) 

ݒ)ଶݒ12+                + ଶݏ2−) − ସݒ(1 + ସݏ) + ଶݏ6 − ଶݒ(3 −  ସ),                           (14)ݏ3
 

ଵܣ              = ݏ) + ݏ)(ݒ − ݒ)(ݒ + (− ଽ
ସ

+ ସݒ(ଶݏ + (ଽଽ
଼
− ଵହ

ସ
ଶݒ(ଶݏ + ଽ

଼
 ଷ(ݒ)ଶ)cosݏ

ସݒ−)3)−                     + ଶݏ) − ଷଽ
଼

ଶݒ( − ଽ
଼
 ଶ(ݒ)cos(ݒ)sinݒ((ଶݏ

                    +(− ଵ
ଶ
ݒ + (ଽଽ

଼
+ ଵ

ଶ
ସݒ(ଶݏ + (ଶଵ

଼
ଶݏ − ଽଽ

଼
ଶݒ( − ଽ

଼
(ଶݏ cos(ݒ) 

             −(ଽ
଼

(− ଵ
ଷ
ସݒ + ଶݏ +  (15)                                                            .((ݒ)sinݒ((ଶݒ11

 
A linear multistep method is said to be P-stable if the first quadrant of the s-v plane 

is completely shadowed. It is said to be singularly P-stable if the method is P-stable when 
߱ = ߶, i.e. only when the frequency of the scalar test equation for the stability analysis is 
equal to the frequency of the scalar test equation for the phase-lag analysis, i.e. the 
shadowed area contains the bisector of the first quadrant of the s-v plane. The stability 
region (s-v plane) of the new method is plotted in Figure 1. A shadowed area denotes the 
region where the method is stable, while a white area denotes the region where the method 
is unstable. According to Figure 1, we can say that the new method is singularly P-stable. 
Of course, in the following theorem, we prove algebraically that the new method is 
singularly P-stable. 

 
Theorem 3.1. The new explicit four-step Obrechkoff method with vanished phase-lag and 
its first, second, third and fourth derivatives (6) is singularly P-stable. 
 

Proof. The stability function of the new method is 
ܵܶ = ସߣ)(ݒ,ݏ)ଶܣ + 1) + ଷߣ)(ݒ,ݏ)ଵܣ + (ߣ +  ଶ,                           (16)ߣ(ݒ,ݏ)ܣ
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Figure 1: The periodicity region of the new singularity P-stable Oberchekoff method. 

 
where ܣ(ݒ,ݏ), ݅ = 0, 1, 2 are mentioned after (12). In the case s = v we have 

ܣ = 2− 4cosଶ(ݒ), 
ଵܣ                                                          = 0,  
ଶܣ                                                          = 1. 
Then the characteristic equation (ChE) for the new method (6) is given by: 

ܧℎܥ = ସߣ − 2(2cosଶ(ݒ) − ଶߣ(1 + 1,                                        (17) 
Since cos(2ݒ) = 2cosଶ(ݒ) − 1, we have 

ଵ,ଶߣ = exp (±݅ݒ),  
ଷ,ସߣ    = − exp(±݅ݒ). 

So, our new method has a characteristic equation that can be written as (17), then all of its 
characteristic roots satisfy the necessary condition: |ߣଵ| = −|ଶߣ| 1 and |ߣ| ≤ 1 with i = 3, 
4 for ℎ߱ < ∞. Therefore, the interval of periodicity of the new method is (0,∞), and thus 
when ݏ = -the new method is P-stable, i.e. the new explicit eighth algebraic order four ,ݒ
step Obrechkoff method with vanished phase-lag and its first, second, third and fourth 
derivatives (6) is singularly P-stable.                                                                                   ■ 
 
4. NUMERICAL RESULTS 

4.1 THE METHODS 

We have used several multistep methods for the integration of the four test problems. These 
methods are 

 The Numerov’s method which is indicated as Method I. 
 The Exponentially-fitted two-step method developed by Raptis and Allison [16] 

which is indicated as Method II. 
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 The Exponentially-fitted four-step method developed by Raptis [15] which is 
indicated as Method III. 

 The eight-step ninth algebraic order method developed by Quinlan and Tremaine 
[13] which is indicated as Method IV. 

 The ten-step eleventh algebraic order method developed by Quinlan and Tremaine 
[13] which is indicated as Method V. 

 The twelve-step thirteenth algebraic order method developed by Quinlan and 
Tremaine [13] which is indicated as Method VI. 

 An exponentially-fitted eight-order method obtained in [31] which is indicated as 
XII. 

 The new explicit four-step P-stable Obrechkoff method with vanished phase-lag and 
its first, second, third, fourth and fifth derivatives developed in this paper which 
indicated as New. 

 
4.2. THE PROBLEMS 

The efficiency of the new optimized symmetric explicit four-step (predictor) method will 
be measured through the integration of four chemical initial value problems with oscillating 
solution. 
 
Example 4.1. Consider the almost periodic orbital problem studied by Franco and Palacios 
[3], as ݕᇱᇱ + ݕ = (0)ݕ ℂ and߳ݕ ట௫ where݁ߝ = ᇱ(0)ݕ,1 = ݅, ߝ = 0.001,߰ = 0.01. The 
theoretical solution of the this problem is given by (ݔ)ݕ = (ݔ)ݑ + (ݔ)ݑ where ,(ݔ)ݒ݅ =
ଵିఌିటమ

ଵିటమ cos(ݔ) + ఌ
ଵିటమ cos (߰ݔ) and (ݔ)ݒ = ଵିఌటିటమ

ିటమ sin(ݔ) + ఌ
ଵିటమ sin(߰ݔ). This system of 

equations has been solved for ݔϵ[0, ߱ For this problem we use .[ߨ1000 = 1. 
 
Example 4.2. Consider the almost periodic orbital problem studied by Stiefel and Bettis 
[33], that can be described by ݕᇱᇱ + ݕ = 0.001݁௫, where ߳ݕℂ and (0)ݕ = ᇱ(0)ݕ,1 =
0.9995݅. The theoretical solution of this problem is given by (ݔ)ݕ = (ݔ)ݑ +  where ,(ݔ)ݒ݅
(ݔ)ݑ = cos(ݔ) + 0.0005 sin(ݔ) , (ݔ)ݒ = sin(ݔ)−  This system has been solved .ݔ0.0005
for 0]߳ݔ, ߱ and for this problem we use [ߨ1000 = 1. 
 
Example 4.3. Consider the initial value problem ݕᇱᇱ = ݕ100− + 99sin (ݐ) where (0)ݕ =
ᇱ(0)ݕ,1 = 11 and 0]߳ݐ, (ݔ)ݕ with the exact solution [ߨ1000 = cos(10ݐ) + sin(10ݐ) +
߱ This equation is called inhomogeneous equation. For this problem we use .ݐ݊݅ݏ = 1. 
 
Example 4.4. Let us consider the nonlinear undamped Duffing’s equation ݕᇱᇱ = ݕ− −
ଷݕ +  where ,(ݔ߱)cosܤ
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(0)ݕ = ᇱ(0)ݕ       ,0.200426728067 = ܤ       ,0 = 0.002,       ߱ = 1.01, 
and ݔϵ ቂ0, ସ.ହగ

ଵ.ଵ
ቃ.  

 
We use the following exact solution from [12], 

(ݔ)݃ = ∑ ଶାଵܭ cos൫(2݅ + ൯ݔ߱(1 ,ଷ
ୀ   

where 
ଵܭ  = 0.200179477536, ଷܭ   = 0.246946143 × 10ିଷ,   ܭହ = 0.304016 × 10ି, 

and 
ܭ = 0.374 × 10ିଽ. 

 

  
 

Figure 2: Efficiency for the Franco and Palacios equation (left) and the orbital problem by 
Stiefel and Bettis (right). 

 
In Figure 2, we see the results for the Franco-Palacios almost periodic problem 

(left) and the Stiefel-Bettis almost periodic problem (right) and in Figure 3, we see the 
results for the inhomogeneous equation (left) and the undamped Duffing’s (right) equation 
for several values of CPU time (in seconds). Among all the methods used, the new 
symmetric explicit four-step method of eighth algebraic order was the most efficient. We 
concluded that the new method is highly efficient compared to other similar methods it also 
indicates the importance of phase-lag when solving ordinary differential equations with 
oscillating solutions. 
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Figure 3: Efficiency for the Inhomogeneous equation (left) and the Duffing’s Equation 
(right). 

 
Example 4.5. The close-coupling differential equations of the Schrödinger type have the 
form: 

ቂ ௗ
మ

ௗ௫మ
+ ݇ଶ −

(ାଵ)
௫మ

− ܸቃ ݕ = ∑ ܸݕ ,ே
ୀଵ                                    (18) 

For 1 ≤ ݅ ≤ ܰ and ݉ ≠ ݅. In this paper, the case in which all channels are open is studied. 
So, the boundary conditions are ݕ = 0 at ݔ = 0 and 

ߜ(ݔ݇)భ݆ݔ~݇ݕ                                    + ൬
ೕ
൰
భ
మ
 ,(ݔ݇)݊ݔ݇ܭ

where ݆(ݔ) and ݊(ݔ) are the spherical Bessel and Neumann functions, respectively. Of 
course, the new method can also be used for the case of closed channels. For this example, 
we use a variable stepsize technique. For this purpose, we will use embedded pairs that will 
be based on an LTEE process. To save space, only the numerical results are given in Table 
1. For more details, we invite the readers to see the paper [35]. For the approximate 
solution of the above presented problem, we have used the following methods: 
 

 The iterative Numerov method of Allison [1] which is indicated as Method A. 
 The variable-step method of Raptis and Cash [17] which is indicated as Method B. 
 The embedded Runge-Kutta method developed in [2] which is indicated as Method 

C. 
 The embedded Runge-Kutta method ERK4(2) developed in [30] which is indicated 

as Method D. 
 The embedded symmetric two-step method developed in [11] which is indicated as 

Method E. 
 The embedded symmetric two-step method developed in [4] which is indicated as 

Method F. 
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 The developed embedded symmetric two-step method developed in [36] which is 
indicated as Method G. 

 The developed six-step P-stable method developed in [27] which is indicated as 
Method H. 

 The new four-step singularly P-stable method developed in this paper which is 
indicated as Method New. 
 

5. CONCLUSION 

In this paper, we have presented a new explicit singularly P-stable four-step Obrechkoff 
method for the numerical solution of periodic or high oscillatory initial value problems. 
From the numerical test to the well-known chemical problems, we found that the new 
method is advantageous its simplicity, accuracy, stability and efficiency. 
 

Table 1. Coupled differential equations. 
Method N ࢞ࢇࢎ RTC ࢘࢘ࡱࡹ 

Method A 4 
9 

16 

0.014 
0.014 
0.014 

3.25 
23.51 
99.15 

1.2× 10ିଷ 
5.7× 10ିଶ 
6.8× 10ିଵ 

Method B 4 
9 

16 

0.056 
0.056 
0.056 

1.55 
8. 43 

43. 32 

8.9× 10ିସ 
7.4× 10ିଷ 
8.6× 10ିଶ 

Method C 4 
9 

16 

0. 007 45. 15 9.0× 10  

Method D 4 
9 

16 

0. 112 
0. 112 
0. 112 

0. 39 
3. 48 

19. 31 

1.1× 10ିହ 
2.8× 10ିସ 
1.3× 10ିଷ 

Method E 4 
9 

16 

0. 448 
0. 448 
0. 448 

0. 14 
1. 37 
9. 58 

3.4× 10ି 
5.8× 10ି 
8.2× 10ି 

Method F 4 
9 

16 

0. 448 
0. 448 
0. 448 

0. 07 
1. 14 
8. 39 

2.8× 10ି 
4.3× 10ି 
7.1× 10ି 

Method G 4 
9 

16 

0. 448 
0. 448 
0. 448 

0. 04 
1.01 
7. 15 

9.7× 10ି଼ 
1.2× 10ି 
2.3× 10ି 

Method H 4 
9 

16 

0. 896 
0. 896 
0. 896 

0. 03 
0. 96 
6. 37 

5.2× 10ି଼ 
8.3× 10ି଼ 
9.1× 10ି଼ 

Method New 4 
9 

16 

0. 896 
0. 896 
0. 896 

0. 02 
0. 83 
5. 21 

4.3× 10ି଼ 
6.2× 10ି଼ 
7.1× 10ି଼ 
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APPENDIX 

ܽ = 1/6(4(cos(ݒ))ସݒସ − 30(cos(ݒ))ଷ sin(ݒ)ݒଷ − 78(cos(ݒ))ସݒଶ  − 10(cos(ݒ))ଶݒସ + 81(cos(ݒ))ଷ sin(ݒ)ݒ 
      +48 cos(ݒ) sin(ݒ)ݒଷ + 27(cos(ݒ))ସ + 135(cos(ݒ))ଶݒଶ + ସݒ12 − 63 cos(ݒ) sin(ݒ)ݒ 
      +9((cos(ݒ))ଶ − ଶݒ12 − 36)/(((cos(ݒ))ଶݒଶ + 3(cos(ݒ))ଶ + ଶݒ2 − 3), 
 
ܽଵ = 1/12(8(cos(ݒ))ଷݒସ − 24(cos(ݒ))ଶ sin(ݒ)ݒଷ + 18(cos(ݒ))ଷݒଶ  + 4 cos(ݒ)ݒସ − 117(cos(ݒ))ଶ sin(ݒ)ݒ 
ଷݒ48 −      sin(ݒ)− 99(cos(ݒ))ଷ  − 99 cos(ݒ)ݒଶ + (ݒ)sinݒ99 + 99cos (ݒ))/((cos(ݒ))ଶݒଶ + 3((cos(ݒ))ଶ + ଶݒ2 − 3), 
 
ܾ = ସݒ4−))1/3 + ଶݒ30 − 45)((cos(ݒ))ସ + ଷݒ18) − (ݒ45 sin(ݒ) (cos(ݒ))ଷ + ସݒ10) − −ଶݒ111 45) cos(ݒ) 
ଷݒ24)+       − ଶݒ)൫ /((ݒ) sin(ݒ45 + 3)((cos(ݒ))ଶ + ଶݒ2 −  ,ଶ൯ݒ(3
 
ଵܾ = ସݒ8−))1/6 + ଶݒ6 + 45)(cos(ݒ))ଷ + ଷݒ24) + (ݒ45 sin(ݒ) (cos(ݒ))ଶ + ସݒ4−) + ଶݒ39 − 45) cos(ݒ) 

ଷݒ24)+       − ଶݒ)ቀ൫ ((ݒ) sin(ݒ45 + 3)(cos(ݒ))ଶ + ଶݒ2 − 3൯ݒଶቁ, 

 
ܿ = −1/6(4(cos(ݒ))ସݒସ− 6(cos(ݒ))ଷ sin(ݒ)ݒଷ − 6(cos(ݒ))ସݒଶ  − 10(cos(ݒ))ଶݒସ + 9(cos(ݒ))ଷ sin(ݒ)ݒ 
     +48 cos(ݒ) sin (ݒ)ݒଷ − 9(cos(ݒ))ସ + 51(cos(ݒ))ଶݒଶ + −ସݒ12 27 cos(ݒ) sin(ݒ)ݒ 
     +9(cos(ݒ))ଶ − ଶݒଶ((ݒ)cos))ସݒ)/(ଶݒ36 + 3(cos(ݒ))ଶ + −ଶݒ2 3)), 
 
ଵܿ = −1/12(8(cos(ݒ))ଷݒସ − 24(cos(ݒ))ଶ sin(ݒ)ݒଷ  − 30(cos(ݒ))ଷݒଶ + 4 cos(ݒ)ݒସ + 27(cos(ݒ))ଶ sin(ݒ)ݒ 

     +9(cos(ݒ))ଷ + 21 cos(ݒ)ݒଶ − −(ݒ)݊݅ݏ\ݒ9 9cos (ݒ))/ ൫ݒସ((cos(ݒ))ଶݒଶ + 3(cos(ݒ))ଷ + ଶݒ2 − 3)൯. 

 
 

  
 

Figure 4: Behavior of the coefficients ܽ and ܽଵ  of new method. 
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Figure 5: Behavior of the coefficients ܾ and ܾଵ of new method. 
 

 
 

 
Figure 6: Behavior of the coefficients ݀ and ݀ଵ of new method. 
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