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ABSTRACT Hyper-tubes consisting of hyper-cubes of n-dimensions were designed and 
formulas for substructures of vary dimensions established. 
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1. INTRODUCTION 

The macroscopic universe, as well as the microscopic realm of molecules and crystals had 
required, in the last years, knowledge about spaces of dimensions higher than three. The 
aim of finding n-space domains surrounded by the usual Euclidean 3D-space, in complex 
chemicals (mineral or synthetic ones) promoted important works towards a systematic 
design of new n-dimensional hyper-structures. Let, first recall some basic mathematical 
notions. 

A convex hull (or envelope) [13] of a set X of points in the Euclidean space is the 
smallest convex set that contains X. A set of points is called convex if it contains all the line 
segments connecting each pair of these points. The convex hull of a finite point set S  Rn 
forms a convex polygon, for n = 2, or, in general, a convex polytope in Rn. Every convex 
polytope in Rn is the convex hull of its vertices. 

Schläfli [4] was the first scientist that described spaces of dimension higher than 
three, namely the six regular 4D-polytopes, also called polychora. These are as follows: 5-
Cell {3,3,3}; 8-Cell {4,3,3}; 16-Cell {3,3,4}; 24-Cell {3,4,3}; 120-Cell {5,3,3} and 600-
Cell {3,3,5}. Five of them can be associated to the Platonic solids but the sixth one, the 24-
cell has no a 3D equivalent; it consists of 24 octahedral cells, 6 cells meeting at each vertex. 
Among the four dimensional polytopes, 5-Cell and 24-Cell are self-dual while the others 
are pairs: (8-Cell & 16-Cell); (120-Cell & 600-Cell).In the above, {p, q, r} are the Schläfli 
symbols: the symbol {p} denotes a regular polygon for integer p, or a star polygon for 
rational p; the symbol {p, q} denotes a 3D-object tessellated by p-gons while q is the 
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vertex-figure (i.e. the number of p-gons surrounding each vertex); the symbol {p, q, r} 
describes a 4D-structure, in which r 3D-objects join at any edge (r being the edge-figure) of 
the polytope, and so on. The Schläfli symbol has the nice property that its reversal gives the 
symbol of the dual polytope.  

In dimensions 5 and higher, there are only three kinds of convex regular polytopes; 
no non-convex regular polytopes exist. In the following, some details are given. 

The n-simplex [1], with Schläfli symbol {3n−1}, and the number of its k-faces  1
1

n
k

 , 

is a generalization of the triangle or tetrahedron to any dimensions. A simplex is an n-
dimensional polytope, which is the convex hull of its n + 1 vertices. For example, a 0-
simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is 
the tetrahedron, and a 4-simplex is the 5-cell.  

The hypercube [1] is a generalization of the 3-cube to n-dimensions and is also 
called an n-cube C(n). It is a regular polytope with mutually perpendicular sides, thus being 
an orthotope. Its Schläfli symbol is{4,3n−2} and k-faces are counted by  2n k n

k
 . 

The n-orthoplex or cross-polytope[1] has the Schläfli symbol {3n−2,4} and k-faces 

 1
12k n

k


 ; it exists in any n-dimensions as the dual of n-cube.The facets of a cross-

polytope are simplexes of the previous dimensions, while its vertex figures are other cross-
polytopes of lower dimensions. 

To investigate an n-dimensional polytopes, a formula, also due to Schläfli [4], is used 
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For n = 4, eq (1) reduces to the well-known Euler [5] relation 
 

2(1 )v e f g            (2) 
with v, e, f and g being the vertices, edges, 2-faces and the genus, respectively; g = 0 for the sphere 
and g = 1 for the torus. 

 
2. RESULTS AND DISCUSSION 

In two previous papers [6,7], the hyper-cube embedding in the torus surface, particularly 
the tori T(4,r) and T(4,r,s), according to Diudea’s discretization procedure [8], was 
reported. In this paper, the formulas for the corresponding tubes (i.e. the open tori) are 
derived. 

The number of k-cubes C(n,k) contained in the hypercube, C(n), can be calculated 
from the coefficients of (2 1)nk   [1] 

( , ) 2 ; 0, .., 1n k n
C n k k n

k
  

   
 

     (3) 
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The hyper-cube can be embedded in a cylinder (or a tube, see Figure), to provide, 
for example, a tube of section 4 (i.e. a cuboid) along its generator r; such a tube is denoted 
hereafter TU((4,r),C(n),TU(n+1)). 

 
Theorem 1. The k-dimensional substructures of a hyper-tube TU((4,r),C(n),TU(n+1)) are 
counted from the hypercube C(n , k) substructures by formulas: 
 

( / 2 1) /rf r n   ( / 2)k rf r k f    
0,1,.., 1k n   

 

((4, ), ( ), ( +1), ) ( , ) kTU r C n TU n k C n k f    (4) 

((4, ), ( ), ( +1), ( 1))T r C n T n k r     

 
 Demonstration comes out from the data listed in Table 1. One can see alternation of 
figure count Sum(fi) according to the Schläfli formula (1): zero for even TU-dimension and 
2 for the even dimension Dim of the hyper-tube. It means that the elementary hyper-tube 
TU((4,r),C(n),TU(n+1)) is like the sphere (i.e. had the genus g = 0). 
 

Table 1. Figure counting in two hyper-tubes embedding hyper-cubes. 

Structure \ k 0 1 2 3 4 5 6 Sum(fi) Dim 
TU((4,5),C(5),TU(6).80 80 224 248 136 37 5 - 0 6 

C(5) 32 80 80 40 10 0 - 2 5 
fk  2.5 2.8 3.1 3.4 3.7 4 - - - 

C(5)*fk &r 80 224 248 136 37 5 - 0 6 
TU((4,5),C(6),TU(7).160 160 528 720 520 210 45 5 2 7 

C(6) 64 192 240 160 60 12 - 0 6 
fk 2.5 2.75 3 3.25 3.5 3.75 4 - - 

C(6)*fk &r 160 528 720 520 210 45 5 2 7 
 

 In a more complex hyper-tube (Figure, the right column); each unit in the tube 
TU((4,r,s),C(n),TU(n+1)) is an elementary hyper-torus T((4,r),C(n)T(n+1)) while there are 
s-units along the tube. 
 
 The following theorem will allow to understand the hyper-tube 
TU((4,r,s),C(n),T(n+1)) composition: 

 

Theorem 2. The k-dimensional substructures of a hyper-tube TU(4,r,s),C(n),TU(n+1)) are 
counted from the previous dimensional substructures of the elementary hyper-torus  
T((4,r),C(n),T(n+1)) hyper-torus, by formulas: 
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((4, ,1),C( ), ( +1), )) ((4, ),C( -1), ( ), ) ((4, ),C( -1), ( ), ( 1))TU r n TU n k T r n T n k T r n T n k    
 

(5) 

((4, , ), ( ), ( +1), ) ((4, ,1), ( ), ( +1), )) ((4, ), C( -1), ( ), )TU r s C n TU n k s TU r C n TU n k T r n T n k  
0,1,.., 1; 3k n n    

(6) 

 
 

  

  
 

Figure 1. A hyper-tube TU(4,4),C(4),TU(5)).32 (left column) and a hyper-
tubeTU((4,8,4),C(3),TU(4)).64 (right column) 
 

Demonstration comes out from data listed in Table 2. Formulas work for any 
integer n>3. The all (+) sum of the substructures of the hyper-torus units can be evaluated 
by the formulas found at the bottom of this table.  

 
Table 2. Figure count in the hyper-tubeTU((4,9,7),C(5),TU(6)).504. 

Structure \ k 0 1 2 3 4 5 Sum(fi) Dim 

TU((4,9,7),C(5),TU(6)).504 504 1692 2214 1413 441 54 0 6 

T((4,9),C(4),T(5)).72 72 180 162 63 9 - 0* 5 

 
- 72 180 162 63 9 - - 

TU((4,9,1),C(5),TU(6)).72 72 252 342 225 72 9 0** 6 

TU((4,9,1),C(5),TU(6))x6 432 1512 2052 1350 432 54 - - 

+ T((4,9),C(4),T(5)).72 72 180 162 63 9 0 - - 

Sum 504 1692 2214 1413 441 54 0 6 
*All+Sum(fi)=r×2×3^(n-2)=486, for r=9; n=5 
**All+Sum(fi(T(4,r,1))=r×4×3^(n-2)=972, for r=9; n=5;  n=dimension of the hyper-cube. 



A Note on Connectivity and λModified Wiener Index                                                            167 

 

Note the difference between the hyper-cube and TU((4,r),C(n),TU(n+1)) on one 
hand and the hyper-tube TU((4,r,s),C(n),TU(n+1)) on the other hand: the figure sum, 
Sum(fi), in the two objects follows the formula (1) (with alternating 0 and 2 for even and 
odd n-dimension, respectively) while the last structure provides zero (see Table 2), 
irrespective of n parity. This is also true for the hyper-tori embedding hyper-cubes, because 
both cylinder and torus have the genus g = 1 [9]. 
 
3. COMPUTATIONAL DETAILS 

The design and properties of the studied structures was performed by our original Nano 
Studio [10] software program. 
 
4. CONCLUSIONS 

Multi-shell clusters appearing frequently in minerals or synthetic chemicals [11] (e.g. some 
clusters of 13-atoms, like: MaMb12 or M13, M=Fe, Pd, Ru, Rh, showing giant magnetic 
moments [12,13], or simple molecules as B4Cl4, Co(ܱܥ)ସି . etc. can be considered to 
belong to space dimensions higher than three. Knowledge on such higher dimensional 
clusters could be of interest in structure elucidation efforts. 
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