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In (J. Math. Chem., 48: 66-71, 2010) and (J. Math. Chem., 48: 159-
164, 2010) García Guirao and Lampart presented the following 
lattice dynamical system stated by Kaneko in (Phys Rev Lett, 65: 
1391-1394, 1990) which is related to the Belusov-Zhabotinskii 
reaction: ݖ௩௨ାଵ = (1 − (௩௨ݖ)Θ(ߟ + ଵ

ଶ
௩ିଵ௨ݖ)Θ]ߟ )−Θ(ݖ௩ାଵ௨ )], where u 

is discrete time index, v is lattice side index with system size M, η∊ 
[0,1] is coupling constant and Θ is a continuous selfmap on H. They 
proved that for the tent map Θ defined as Θ(ݖ) = 2-1| − 1z| for any 
z∊H, the above system with η=0 has positive topological entropy 
and that such a system is Li-Yorke chaotic and Devaney chaotic. In 
this article, we further consider the above system. In particular, we 
give a sufficient condition under which the above system is Kato 
chaotic for η=0 and a necessary condition for the above system to 
be Kato chaotic for η=0. Moreover, it is deduced that for η=0, if Θ is 
P-chaotic then so is this system, where a continuous map Θ from a 
compact metric space Z to itself is said to be P-chaotic if it has the 
pseudo-orbit-tracing property and the closure of the set of all 
periodic points for Θ is the space Z. Also, an example and three 
open problems are presented. 
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1. INTRODUCTION  

In the whole article, a dynamical system is a pair (ܼ,Θ) where Z  is a compact metric space 
and Θ:ܼ → ܼ is a continuous map. Since Li and Yorke [1] gave the first definition of chaos 
in 1975, topological dynamical systems have been highly explored in the literature [2,3] 
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because these systems may be very good examples of problems coming from the theory of 
topological dynamics and model many phenomena from various disciplines of engineering 
and science. 

From physical and chemical engineering applications we know that Lattice Dynamical 
Systems or 1d Spatiotemporal Discrete Systems which are generalizations of classical 
discrete dynamical systems have recently appeared as an important subject for 
investigation. We can find the importance of these type of systems [4]. In [5] García Guirao 
and Lampart presented the following lattice dynamical system which is stated by Kaneko in 
[6] and is related to the Belusov-Zhabotinskii reaction: 

௩௨ାଵݖ      = (1 − (௩௨ݖ)Θ(ߟ + ଵ
ଶ
௩ିଵ௨ݖ)Θ]ߟ ) − Θ(ݖ௩ାଵ௨ )],                             (1) 

where u  is discrete time index, v  is lattice side index with system size M , [0,1]H η  is 
coupling constant and Θ is a continuous self map on H . They proved that the above system 
with 0η  and Θ = Λ has positive topological entropy, where Λ is the tent map defined by 
Λ(z) = 1 − |1 − for any x [0,1] |ݖ2 . To understand whether a given coupled lattice 
system has a complicated dynamics or not by the observation of one topological dynamical 
property is an open problem (see [5]). In [7], by the concept of chaos, the authors 
characterized the dynamical complexity of a coupled lattice system which is stated by 
Kaneko in [6] and is related to the Belusov-Zhabotinskii reaction. They got that this system 
with Θ = Λ is Devaney chaotic and Li-Yorke chaotic for 0η , where Λ is the tent map. 
Also, some problems on the dynamics of this system with Θ = Λ were given by them for 

0η  [5]. 
Inspired by [5, 7], we will further study the dynamical properties of the above system 

(1). In particular, it is deduced that for 0η , if the above system (1) is Kato chaotic then 
so is Θ. We also prove that if Θ is Kato chaotic, and if Θ satisfies that for any 0 , if 
Θ Θ1, 2( ) ( )i in n

i is s κ  for any i{1,2, ... ,M} and some integers 0in  ( 1,2i  , ... ,M) then 

there exists an integer l( 1n , 2n , ... , Mn , ) > 0 with  

Θ Θ1, 1,( ) ( )1 2 M 1 2 Ml(n  ,n ,... , n , ) l(n  ,n ,..., n , )
i is s κ κ κ , 

for any i{1,2, ... ,M}, then, for 0η , the system (1) is Kato chaotic. Moreover, we obtain 
a sufficient condition for the system (1) to be P-chaotic when 0η . Also, an example and 
three open problems are given. 
 
2. PRELIMINARIES 

In the whole article, Z  is a compact metric space with metric ߩ, (ܼ,Θ) is a dynamical 
system and [0,1]H  . Assume that ߩ is the product metric on the product space MH  which 
is defined as 
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Suppose that (ܼ, ܼ:is a metric space. A dynamic system (ܼ,Θ) or a map Θ  (ߩ → ܼ is 
transitive if for any nonempty open subsets 1 2,U U Z , Θ௞( ଵܷ) ∩ ଶܷ ≠ ∅ for some integer 
ߢ > 0. 

A dynamic system (ܼ,Θ)  or a map Θ:ܼ → ܼ is topologically mixing if for any 
nonempty open subsets 1 2,U U Z , Θ௞( ଵܷ) ∩ ଶܷ ≠ ∅  for some integer ߢ > 0 and any 
integer ߩ >  .ߢ

A dynamic system (ܼ,Θ) or a map Θ:ܼ → ܼ is sensitive if there is a ߢ > 0 such that 
for any given ݒ > 0 and any given z Z , there is a point z Z  with ݖ)ߩ, (′ݖ <   and ݒ

൯(ᇱݖ)Θ௄,(ݖ)൫Θ௄ߩ >  ߢ
for some integer ߢ > 0, where   is called a sensitivity constant of Θ. A dynamic 

system (ܼ,Θ) or a map Θ:ܼ → ܼ is accessible if for any ߢ > 0 and any two nonempty open 
subsets 1 2,U U Z , there are two points 1z U  and 2z U  with  

൯(ᇱݖ)Θ௄,(ݖ)൫Θ௄ߩ <  ߢ
for some integer ߢ > 0. A dynamic system (ܼ,Θ) or a map Θ:ܼ → ܼ is chaotic in the sense 
of Ruelle and Takens [12] if it is transitive and sensitive. A dynamic system (ܼ,Θ) or a 
map Θ:ܼ → ܼ is Kato chaotic if it is sensitive and accessible. Note that a topologically 
mixing dynamic system (ܼ,Θ) or a topologically mixing map Θ:ܼ → ܼ is Kato chaotic 
[13]. In [14] Gu showed that for a continuous self map with a fixed point on a complete 
metric space without isolated point, the chaoticity in the sense of Ruelle-Takens implies the 
chaoticity in the sense of Kato, but the converse does not hold in general. This shows that 
Kato’s chaoticity is strictly weaker than the chaoticity in the sense of Ruelle-Takens. From 
Theorem 12 in [15] we know that if a continuous map Θ :[0,1] [0,1]  is topologically 
chaotic, i.e., has positive topological entropy, then it is chaotic in the sense of Li and 
Yorke, but the converse is not true. By Theorem 2.1 in [16] if a continuous map Θ: [0,1] →
[0,1] is sensitive, then it is topologically chaotic. So, Li-Yorke chaos does not imply 
sensitivity. Consequently, by the definition, Li-Yorke chaos does not imply Kato’s chaos. 
A question arises: does Kato’s chaos imply Li-Yorke chaos? To my knowledge the 
problem is still open. 

A dynamic system (ܼ,Θ)  or a map Θ:ܼ → ܼ with the pseudo-orbit-tracing property 
[17] is said to be P-chaotic if ܲ݁ݎ(Θ) = ܼ, where ܲ݁ݎ(Θ) is the set of all periodic points of 
Θ, and A  is the closure of A . 

Let Θ:ܼ → ܼ be a continuous selfmap on a compact metric space ( , )Z ρ . A sequence 
{ : 0}ju j Z   is said to be a η -pseudo-orbit for Θ [17,18] if Θ 1( ( ), )j ju u  ρ η  for any 
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integer 0j  . For a fixed 0λ , a given sequence { : 0}ju j Z   is said to be λ -traced by 

u Z  [17,18] if  )),(( j
j uu λ  for any integer 0j  . A self map Θ:ܼ → ܼ is called to 

have the pseudo-orbit-tracing property [17,18] if for any given 0λ  there is 0η  such 
that any η-pseudo-orbit for Θ can be λ-traced by some point of Z . 

The state space of the system (1) is the set  
ܼ = :ݖ} ݖ = ,{௞ݖ} ݖ ∈ ℝ௔ , ݅ ∈ ℤ௕ ‖௞ݖ‖, < ∞}, 

where 1a   is the dimension of the range space of the map of state , 1kz b   is the 

dimension of the lattice and the 2l  norm 

ଶ‖ݖ‖                                                       = (∑ ௞|ଶ௞∈௭್ݖ| )
భ
మ,  

is usually taken (|ݖ௞| is the length of the vector kz ), see [5, 7]. 
We will continue to explore the above system (1) which is stated by Kaneko in [6] and 

is related to the Belusov-Zhabotinskii reaction (for this point one can refer to [8], and for 
experimental study of chemical turbulence by this method one can find in [9−11]). 

In general, one always supposes that one of the following periodic boundary 
conditions of the system (1) holds: 

1. u u
v v Mz Z  , 

2. u u M
v vz Z  , 

3. u u M
v v Mz Z 

 , 
standardly, we assume that the first case of the boundary conditions is satisfied. 
 
3. MAIN RESULTS  

 Motivated by the results in [5, 7] we have the following result. 

 
Theorem 3.1. For zero coupling constant, a necessary condition for the system (1) to be 
Kato chaotic is that Θ is Kato chaotic. 

Proof. Clearly, the system (1) is equivalent to the system (ܪெ ,Θଵ × Θଶ × ⋯× Θெ) for
0η  where Θ௞ = Θ for every k{1, 2, ... , M}. It is easily seen that the system (ܪெ ,Θଵ ×

Θଶ × ⋯× Θெ) is sensitive if and only if so is Θ, where Θ௞ = Θ for every k {1,2, ... ,M}. 
By the definition one can easily verify that if the system (ܪெ ,Θଵ × Θଶ × ⋯× Θெ) is 
accessible then so is Θ௞ for every k{1,2, ... ,M}. Consequently, by hypothesis and the 
definition one can easily see that Theorem 3.1 is true.                                                          ■ 

The following theorem is from [13]. For completeness, we give its proof. 

Theorem 3.2. If Θ is topologically mixing on a metric space (ܼ,  .then it is Kato chaotic ,(ߩ
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Proof. It is well known that any topologically mixing map is sensitive. As Θ is 
topologically mixing, it is sensitive. Let a Z  be a given point. Then, for any given ε 0  
and any given nonempty open sets ZVU , , by the topological mixing of Θ, there are an 

integer 0n , u U  and v V  such that Θ௡(ݑ),Θ௡(ݒ) ∈ ,ܽ)ܤ ଵ
ଶ
  where ,(ߝ

,ܽ)ܤ ଵ
ଶ
(ߝ =. ቄܾ ∈ (ܾ,ܽ)ߩ :ܼ < ଵ

ଶ
 .ቅߝ

This implies that  

൯(ݒ)Θ௡,(ݑ)൫Θ௡ߩ < ଵ
ଶ
ߝ + ଵ

ଶ
ߝ =  .ߝ

So, by the definition, Θ is accessible. Consequently, by the definition, Θ is Kato chaotic.   ■ 

 

Theorem 3.3. Let Θ be a topologically transitive continuous map on [0,1]. Then Θ is Kato 
chaotic. 

Proof. It is well known that if Θ is a topologically transitive continuous map on [0,1], then 
one of the following holds: 

1. Θ is topologically mixing. 

2. There is a(0,1) such that Θଶ|[଴,௔]and Θଶ|[௔,ଵ] are topologically mixing. 

If Θ is topologically mixing, by Theorem 3.2 we know that Θ is Kato chaotic. If 
there is (0,1)a  such that Θଶ|[଴,௔]and Θଶ|[௔,ଵ] are topologically mixing, by Theorem 3.2 
we know that Θଶ|[଴,௔]and Θଶ|[௔,ଵ] are Kato chaotic. As a topologically transitive continuous 
maps on [0,1] is sensitive, by the definition it is enough to show that Θ is accessible. For 
any κ 0 and any nonempty open sets [ , ] [0,1]U V  , by the topological mixing of 
Θଶ|[଴,௔]and Θଶ|[௔,ଵ] there are a positive integer 0m , u U and v V  such that Θ௠(ݑ) ∈

,ܽ)ܤ ଵ
ଶ
(ݒ)and Θ௠ (ߢ ∈ ,ܽ)ܤ ଵ

ଶ
−(ݑ)This implies that  |Θ௠ .(ߢ Θ௠(ݒ)| < ଵ

ଶ
ߢ + ଵ

ଶ
ߢ =  ,So .ߢ

by the definition and the above argument, Θ is accessible. Consequently, by the definition 
and the above argument, Θ is Kato chaotic.                                                                           ■ 

 

Lemma 3.1 [16]. Let Θ be a sensitive continuous map on ]1,0[ . Then Θ is topologically 
chaotic. 

 

Lemma 3.2 [15]. Let Θ be a continuous maps on ]1,0[ . Then Θ is topologically chaotic if 
and only if Θ is Devaney chaotic. 
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Theorem 3.4. Let Θ be a continuous map on ]1,0[ . Then Θ is Kato chaotic if and only if Θ 
is Devaney chaotic. 

Proof. By the definitions, Lemma 3.1 and Lemma 3.2, Theorem 3.4 holds. For a 
continuous map Θ on ]1,0[ , we do not know whether the chaoticity of Θ in the sense of 
Kato implies the same property of the product map Θ× Θ. However, we have the following 
result.                                                                                                                                      ■ 

 

Theorem 3.5. Suppose that Θ is Kato chaotic, and that Θ satisfies that for any 0κ , if 

หΘ௡೔൫ ଵܵ,௜൯ − Θ௡೔൫ܵଶ,௜൯ห <  ,ߢ

for any i{1,2, ... ,M} and some integers ݊௜ > 0 ( 1,2i  , ... ,M) then there exists an integer 
݈(݊ଵ, ݊ଶ, … ,݊ெ ,   with 0 <(ߢ

หΘ௟(௡భ,௡మ,…,௡ಾ,఑)൫ ଵܵ,௜൯ − Θ௟(௡భ,௡మ,…,௡ಾ,఑)൫ ଵܵ,௜൯ห <  ,ߢ

for any i{1,2, ... ,M}, then, for 0η , the system (1) is Kato chaotic. 

Proof. For 0η , it is obvious that the system (1) is equivalent to the system (ܪெ ,Θଵ ×
Θଶ × ⋯× Θெ) where Θ௞ = Θ for every k{1,2, ... ,M}. By hypothesis and [14] we have 
that (ܪெ ,Θଵ × Θଶ × ⋯× Θெ) is sensitive where Θ௞ = Θ for every k{1,2, ... ,M}. By 
hypothesis and the definition one easily show that Θଵ × Θଶ × ⋯× Θெ is accessible where 
Θ௞ = Θ for every k{1,2, ... ,M}. By the definition, Θଵ × Θଶ × ⋯× Θெ is Kato chaotic 
where Θ௞ = Θ for every k{1,2, ... ,M}.                                                                                ■ 

 

Example 3.1. Suppose that Θ = Λ is the tent map. Then the system (1) is Kato chaotic for 
0 . As the tent map Θ = Λ is topologically mixing, Θଵ × Θଶ × ⋯× Θெ is topologically 

mixing, where Θ௞ = Λ for every k{1,2, ... ,M}. As the system (1) is equivalent to the 
system (ܪெ ,Θଵ × Θଶ × ⋯× Θெ) for 0η  where Θ௞ = Λ for very k{1,2, ... ,M}, by [13] 
or Theorem 3.2 the system (1) is Kato chaotic. 

 

Remark 3.1. Theorem 3.5 shows that study on Kato’s chaocity of the system (1) is very 
difficult. Especially, for 0η , study on Kato’s chaocity of the system (1) is rather 
difficult. 

We have the following open problem. 
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Problem 3.1. For the above system (1) with any coupling constant (0,1]η , is the result 
of Theorem 3.5 valid? 
 

The proof of following lemma is easy. For completeness, we give its proof here. 

Lemma 3.3. Let Θ:ܼ → ܼ be a continuous map on a metric space. Then Θ× Θ has the 
pseudo-orbit-tracing property if and only if Θ has the pseudo-orbit-tracing property. 

Proof. Assume that Θ × Θ has the pseudo-orbit-tracing property. For any given 0λ , we 
let {ݑ௝: ݆ ≥ 0} ⊂ ܼ be a  -pseudo-orbit for Θ. Clearly, {(ݑ௝,ݑ௝): ݆ ≥ 0} Z Z   be a  -
pseudo-orbit for Θ × Θ. By the definition, there exists ( , )u v Z Z  with  

×Θ))′ߩ                                                  Θ)௝(ݒ,ݑ)(ݑ௝, ((௝ݑ <  ,ߟ

for any integer 0j  , where ߩᇱis the usual product metric on the product metric space 
Z Z . This means that ߩ൫Θ௝(ݑ),ݑ௝൯ < for any integer 0j ߟ  . So, Θ has the pseudo-orbit-
tracing property. The proof of the converse is similar and is omitted.                                   ■ 

 

Theorem 3.6. For 0η , if Θ is P-chaotic, then so is the system (1). 

Proof. Clearly, for 0η , the system (1) is equivalent to the system (ܪெ  where ,(ܨ,
ܨ =  Θଵ × Θଶ × ⋯× Θெ and Θ௜ = Θ for any i{1,2, ... ,M }. Since 

(ܨ)ݎ݁ܲ = (Θ)ݎ݁ܲ × (Θ)ݎ݁ܲ × ⋯×  ,(Θ)ݎ݁ܲ

by hypothesis, the definition and Lemma 3.3, F is P-chaotic.                                               ■ 

 

Problem 3.2. For 0η  and any given P-chaotic continuous self map Θ on ]1,0[ , is the 
system (1) P-chaotic? 
 

One can easily extend the system (1) to the following non-autonomous discrete 
system:  

௩,௜ݖ
௨ାଵ = (1− ௩,௜ݖΘ൫(ߟ

௨ ൯ + ଵ
ଶ
௩ିଵ,௜ݖΘ൫ൣߟ

௨ ൯ − Θ൫ݖ௩ାଵ,௜
௨ ൯൧,                        (2) 

for any integer 1i   where u  is discrete time index, v  is lattice side index with system size 
M , [0,1]H η  is coupling constant and Θ௜ is a continuous selfmap on H for any integer 

1i  . 
 

Inspired by [19], we pose the following problem. 
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Problem 3.3. The dynamical properties of the system (1) can be extended to the non-
autonomous discrete system (2)? 
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