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The revised edge-Szeged index of a connected graph ܩ is defined as 
(ܩ)∗ݖܵ = ∑ ቀ݉௨(݁|ܩ) + బ(|ீ)

ଶ
ቁୀ௨௩∈ா(ீ) ቀ݉௩(݁|ܩ) + బ(|ீ)

ଶ
ቁ, where 

 are, respectively, the number of (ܩ|݁)and ݉0 (ܩ|݁)ݒ݉ ,(ܩ|݁)ݑ݉
edges of ܩ lying closer to vertex ݑ than to vertex ݒ, the number of 
edges of ܩ lying closer to vertex ݒ than to vertex ݑ, and the number 
of edges equidistant to ݑ and ݒ. In this paper, we give an effective 
method for computing the revised edge-Szeged index of unicyclic 
graphs and using this result we identify the minimum revised edge-
Szeged index of conjugated unicyclic graphs which is defined as the  
unicyclic graphs with a perfect matching. We also give a method of 
calculating revised edge-Szeged index of the joint graph. 
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1. INTRODUCTION  

All graphs considered in this paper are finite, undirected and simple, and refer to [2] for 
notations and terminologies used but not defined here.  

Let ܩ be a connected graph with vertex set ܸ(ܩ) and edge set (ܩ)ܧ. For ݒ ∈  let ,(ܩ)ܸ
(ݒ)ீ݀ and ܩ in ݒ denote the set of all the adjacent vertices of (for short (ݒ)ܰ) (ݒ)ܰீ =

| ݓ Let .ܩ in ݒ the degree of ,|(ݒ)ܰீ ∈ (ݑ)ଶீ݀ ,(ݑ)ܰீ = ∑ ௪∈ேಸ(௨)(ݓ)݀ . Denote (ݑ)ீݐ the 
number of triangles in graph ܩ that contain the vertex ݑ. Call ݑ a pendent vertex of ܩ, if 
(ݑ)ீ݀ = 1 and ݒݑ a pendant edge of ܩ, if one of its endpoints is a pendent vertex. Denote 
by ܸܲ the set of pendent vertices of ܩ. The distance, ݀(ܩ|ݒ,ݑ) (or ݀(ݒ,ݑ) for short), 
between vertices ݑ and ݒ of ܩ is the length of the shortest ݑ, (ܩ|ݑ)ܦ Let .ܩ path in ݒ =
∑ ,ݑ)݀ (ீ)௩∈(ܩ|ݒ  and ܩ − ܩ ,ݒݑ +  by deleting the ܩ denote the graph obtained from ݒݑ
edge of ݒݑ and adding an edge between ݑ and ݒ, respectively. An edge ݁ is called a cut 
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edge of a connected graph ܩ if ܩ − ݁ is disconnect. Let ܲ, ܥ, ܵ and ܭ be the path, 
cycle, star and complete graph of order ݊, respectively.  

A matching ܯ in a graph ܩ is a set of edges of ܩ such that no two edges from ܯ 
share a vertex. If every vertex of ܩ is incident with an edge of ܯ, the matching ܯ is called 
a perfect matching. 

In chemical graph theory, graph invariants are numbers related to graphs with 
invariant structure. These invariants are also called topological indices. Topological indices 
provide correlations with physical, chemical and thermodynamic parameters of chemical 
compounds, see [17, 18, 26]. Among all the topological indices, the most well-known is the 
Wiener index [29], which is defined as the sum of distances over all unordered vertex pairs 
in ܩ, namely, ܹ(ܩ) = ∑ ,ݑ)ீ݀ (ீ)⊇{௨,௩}(ݒ . 

A long time known property of the Wiener index is the formula [29] 
(ܩ)ܹ = ∑ ݊௨(݁|ܩ)݊௩(݁|ܩ)ୀ௨௩∈ா(ீ) , 

where ݊௨(݁|ܩ) and ݊௩(݁|ܩ) are, respectively, the number of vertices of ܩ lying closer to 
vertex ݑ than to vertex ݒ and the number of vertices of ܩ lying closer to vertex ݒ than to 
vertex ݑ. It is applicable for trees. Using the above formula, another topological index 
related, named by Szeged index, was introduced by Gutman [13], which is an extension of 
the Wiener index and defined by ܵ(ܩ)ݖ = ∑ ݊௨(݁|ܩ)݊௩(݁|ܩ).ୀ௨௩∈ா(ீ)  In addition, some 
properties and applications of Wiener index and Szeged index have been investigated [1, 
5−7, 11, 12, 15, 16, 19, 20, 22, 24, 26, 29, 31, 32]. 

Given an edge ݁ = ݒݑ ∈  ,݁ and the edge ݔ the distance between the vertex ,(ܩ)ܧ
denoted by ݀(ݔ, ݁), is defined as ݀(ݔ, ݁) = min{݀(ݔ, (ܩ|݁)௨ܯ Denote .{(ݒ,ݔ)݀,(ݑ =
{݁ ∈ ,ݑ)݀:(ܩ)ܧ ݁) < ,ݒ)݀ (ܩ|݁)௩ܯ ,{(݁ = {݁ ∈ ,ݒ)݀:(ܩ)ܧ ݁) < ,ݑ)݀ ݁)} and ܯ(݁|ܩ) =
{݁ ∈ ,ݑ)݀:(ܩ)ܧ ݁) = ,ݒ)݀ ݁)}. Let ݉ = (ܩ|݁)௨݉ ,|(ܩ)ܧ| = (ܩ|݁)௩݉ ,|(ܩ|݁)௨ܯ| =
(ܩ|݁)and ݉ |(ܩ|݁)௩ܯ| = (ܩ|݁)we have ݉௨ ,|(ܩ|݁)ܯ| + ݉௩(݁|ܩ) + ݉(݁|ܩ) = ݉. 
Then, the edge-Szeged index [14] and revised edge-Szeged index [8] of G are defined as 

(ܩ)ݖܵ            = ∑ ݉௨(݁|ܩ)݉௩(݁|ܩ)ୀ௨௩∈ா(ீ) , 

(ܩ)∗ݖܵ = ∑ (݉௨(݁|ܩ) + బ(|ீ)
ଶ

)ୀ௨௩∈ா(ீ) (݉௩(݁|ܩ) + బ(|ீ)
ଶ

). 
For the sake of simplicity, we consider the contribution ߶(݁) of an edge ݁ =  defined as ݒݑ

߶(݁) = (݉௨(݁|ܩ) + బ(|ீ)
ଶ

)(݉௩(݁|ܩ) + బ(|ீ)
ଶ

). 
Up until now, much work has been done on revised edge-Szeged index. Faghani and 

Ashrafi [12] computed an exact formula for the revised edge-Szeged index of Cartesian 
product of graphs. Liu and Wang [23] gave a lower bound of the edge revised Szeged index 
among all ݉-edges cactus graphs with ݇ cycles. Wang et al. [28] characterized the ݊-vertex 
unicyclic graphs with a given diameter having the minimum edge-Szeged index. They used 
a unified approach to identify the ݊-vertex unicyclic graphs with the minimum, the second 
minimum, the third minimum and the fourth minimum edge-Szeged indices. Other results 
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see [3, 4, 9, 21], and the references cited therein. 
In this paper, we give an effective method for computing the revised edge-Szeged 

index of unicyclic graphs and identify the minimum revised edge-Szeged index of 
conjugated unicyclic graphs. And we also give a method of calculating revised edge Szeged 
index of the joint graph. 
 
2. REVISED EDGE-SZEGED INDEX OF CONJUGATED UNICYCLIC GRAPHS 

 For nonnegative integer ߚ ≥ 2, let ଶܶఉ,ఉ (see Figure 1) be the tree obtained by attaching a 
pendent edge to each of some ߚ − 1 non-central vertices of the star ఉܵାଵ. Let ଶܶఉାଵ,ఉ (see 
Figure 1) be the tree obtained by attaching a pendent edge to each of some ߚ noncentral 
vertices of the star ఉܵାଵ. Let ࣮(2ߚ,ߚ) and ࣯(2ߚ,ߚ) denote the set of conjugated trees 
(trees with a perfect matching) and conjugated unicyclic graphs (unicyclic graphs with a 
perfect matching) of order 2ߚ, respectively, where ߚ is the number of matchings in ܩ. 

First, we introduce some lemmas that will be useful in the proof of the main result. 
 

 
Figure 1. The graphs ଶܶఉ,ఉ and ଶܶఉାଵ,ఉ. 

 
Lemma 2.1. [25] Let ܩ be a graph of order 2ߚ with a perfect matching. If Pܸ ≠ ∅, then 
for any vertex ݑ ∈ |ܸܲ⋂(ݑ)ܰ| ,(ܩ)ܸ ≤ 1.  
 

Lemma 2.2. [8] Let ܩ be a unicyclic graph with ݊ vertices. Then ܵݖ∗(ܩ) ≤ య

ସ
 with 

equality if and only if ܩ is the cycle ܥ. 
 
From Lemma 2.2, it is obvious that ܵݖ∗(࣯(2ߚ,ߚ)) ≤  ଷ with equality if and onlyߚ2

if ࣯(2ߚ,ߚ) is the cycle ܥଶఉ . Therefore, in the following, we only need to consider the 
lower bound of revised edge-Szeged index of conjugated unicyclic graphs. First, we 
introduce some useful graph transformations. 
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Figure 2. The edge-lifting transformation. 

 
Lemma 2.3. (The edge-lifting transformation) Let ܩ be a connected graph which obtained 
from a connected graph ܩଵ(ݑ ∈ ,(ଵܩ)ܸ |ଵܩ| ≥ 2) and a tree ଵܶ(ݒ ∈ ܸ( ଵܶ), | ଵܶ| ≥ 3) by 
adding an edge ݁ =  .and with perfect matchings ݒݑ

(݅) If ݁ = ݒݑ ∈  ᇱ (see Figure 2(݅)) be the graphܩ let ,(is a perfect matching ܯ) ܯ
obtained from ܩ by deleting ݁ from ܩ, identifying ݑ and ݒ into a new vertex ݔ and adding a 
vertex ݕ connected to ݔ. Let the edge connecting ݔ and ݕ in ܩᇱ be again denoted by ݁. Then 
(ܩ)∗ݖܵ >  .(ᇱܩ)∗ݖܵ

(݅݅) If ݁ = ݒݑ ∉ there exists a cut edge ݁ଵ ,(is a perfect matching ܯ) ܯ = ݓݒ ∈   ܯ
in ଵܶ. Then, obviously, ଵܶ (see Figure 2(݅)) can be seen as the graph obtained from a tree 
ଶܶ and a tree ଷܶ by adding an edge between a vertex ݓ of ଷܶ and a vertex ݒ of ଶܶ. Let ܩᇱ 

(see Figure 2(݅݅)) be the graph obtained from ܩ by deleting ݁ and ݁ଵ from ܩ, identifying ݑ, 
 Let the edge .ݔ connected to ݖݕ and adding an edge ݔ into a new vertex ݓ and ݒ
connecting ݔ and ݕ  ,ݕ and ݖ in ܩᇱ be again denoted by ݁ and ݁ଵ. Then ܵݖ∗(ܩ) >  .(ᇱܩ)∗ݖܵ
 
Proof. Note that ܩᇱ is a graph with perfect matchings, since ܩ is a graph with perfect 
matchings. 

(݅) Observe that after the modification of the graph, for every edge ݂, distinct from ݁, 
the contribution ߶(݂) stays unchanged. For edge ݁, we have that ߶ீᇲ(݁) = ଵ

ଶ
−|(ᇱܩ)ܧ|) ଵ

ଶ
), 

߶ீ (݁) = ൬|ܧ(ܩଵ)| +
1
2൰ ൬

)ܧ| ଵܶ)| +
1
2൰ = )ܧ||(ଵܩ)ܧ| ଵܶ)| +

1
2

|(ଵܩ)ܧ|) + )ܧ| ଵܶ)|) +
1
4 

               ≥ −|(ᇱܩ)ܧ|) 2) + ଵ
ଶ

|(ᇱܩ)ܧ|) − 1) + ଵ
ସ
 = ଷ

ଶ
−|(ᇱܩ)ܧ| ଽ

ସ
> ߶ீᇲ(݁). 

Thus ܵݖ∗(ܩ) >  .(ᇱܩ)∗ݖܵ
(݅݅) Observe that after the modification of the graph, for every edge ݂, distinct from 

݁ and ݁ଵ, the contribution ߶(݂) stays unchanged. For edge ݁ and ݁ଵ we have that 
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    ߶ீᇲ(݁) = ଷ
ଶ
ቀ|ܧ(ܩᇱ)|− 2 + ଵ

ଶ
ቁ = ଷ

ଶ
|(ᇱܩ)ܧ| − ଽ

ସ
, 

  ߶ீᇲ(݁ଵ) = ଵ
ଶ
ቀ|ܧ(ܩᇱ)| − 1 + ଵ

ଶ
ቁ = ଵ

ଶ
|(ᇱܩ)ܧ| − ଵ

ସ
, 

   ߶ீ (݁) = ൬|ܧ(ܩଵ)| +
1
2൰ ൬

)ܧ| ଶܶ)| + )ܧ| ଷܶ)| +
3
2൰ 

   = )ܧ|)|(ଵܩ)ܧ| ଶܶ)| + )ܧ| ଷܶ)| + 1) + ଵ
ଶ

|(ଵܩ)ܧ|) + )ܧ| ଶܶ)| + )ܧ| ଷܶ)| + 1) + ଵ
ସ
 

               ≥ |(ᇱܩ)ܧ| − 2 + ଵ
ଶ

|(ᇱܩ)ܧ|) − 1) + ଵ
ସ
 = ଷ

ଶ
|(ᇱܩ)ܧ| − ଽ

ସ
, 

  ߶ீ (݁ଵ) = ൬|ܧ( ଷܶ)| +
1
2൰൬

)ܧ| ଶܶ)| + |(ଵܩ)ܧ| +
3
2൰ 

   = )ܧ| ଷܶ)|(|ܧ( ଶܶ)| + |(ଵܩ)ܧ| + 1) + ଵ
ଶ

)ܧ|) ଷܶ)| + )ܧ| ଶܶ)| + |(ଵܩ)ܧ| + 1) + ଵ
ସ
 

   ≥ |(ᇱܩ)ܧ| − 2 + ଵ
ଶ

|(ᇱܩ)ܧ|) − 1) + ଵ
ସ
   = ଷ

ଶ
|(ᇱܩ)ܧ| − ଽ

ସ
 . 

Then ߶ீ (݁) + ߶ீ (݁ଵ) > ߶ீᇲ(݁) + ߶ீᇲ(݁ଵ). Thus ܵݖ∗(ܩ) >  and the proof is (ᇱܩ)∗ݖܵ
completed.                                                                                                                              ∎ 
 

By Lemma 2.3, we have the following result. 
 

Lemma 2.4. Let ܩ ∈ ߚ where (ߚ,ߚ2)࣮ ≥ 2. Then ܵݖ∗(ܩ) ≥ ଶߚ4 − ଵହ
ଶ
ߚ + ଵହ

ସ
 with equality 

if and only if ܩ ≅  .(ߚ,ߚ2)ܶ
 

Let ݃ ≥ 3 be an integer, and let ܥ =  ଵ be a cycle on ݃ vertices. Letݒݒ⋯ଶݒଵݒ

ଵܶ, ଶܶ, … , ܶ be vertex-disjoint trees, and let the root vertex of ܶ be ݒ for 1 ≤ ݅ ≤ ݃. 
Denote by ܥ( ଵܶ, ଶܶ, … , ܶ )  the unicyclic graph obtained from of ܥ by identifying the 
root vertex ݑ of ܶ with ݒ for 1 ≤ ݅ ≤ ݃. Any unicyclic graph ܩ with a ݃-cycle can be 
denoted by the form ܥ( ଵܶ, ଶܶ, … , ܶ ), where | ܶ| = ݐ , (݅ = 1, 2, … ,݃) and ∑ ݐ


ୀଵ = ݊. 

By Lemma 2.3, we can repeat the edge-lifting transformation to the unicyclic graphs 
)ܥ ଵܶ, ଶܶ, … , ܶ )  and we have 
 

Lemma 2.5. If ܥ( ଵܶ, ଶܶ, … , ܶ ) ∈  then ,(ߚ,ߚ2)࣯
)ܥ) ∗ݖܵ ଵܶ, ଶܶ, … , ܶ )) ≥ )ܥ) ∗ݖܵ  ଵܶ

ᇱ, ଶܶ 
ᇱ , … , ܶ

ᇱ)) 
with equality if and only if ܶ ≅ ܶ 

ᇱ ,  for all ݇ (1 ≤ ݇ ≤ ݃), where | ܶ
ᇱ| = | ܶ| =  ,ݐ

ܶ
ᇱ ≅ ଶܶఉೖ ,ఉೖ  if ݐ = ߚ2  and ܶ

ᇱ ≅ ଶܶఉೖାଵ,ఉೖ  if ݐ = ߚ2 + 1. 
In the following, we give an effective method for computing the revised edge-

Szeged index among unicyclic graphs ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ ). 
 

Theorem 2.6. If G = ܥ( ଵܶ, ଶܶ, … , ܶ ), then 
(ܩ)∗ݖܵ  = ∑ ܹ( ܶ)


ୀଵ + ∑ −|ܩ|) | ܶ| + 1)

ୀଵ |ݒ)ܦ ܶ)∑ ∑ | ܶ

ୀଵ


ୀଵ |ห ܶห݀൫ݒ,  ൯ܥหݒ

∑)(݃)ߜ−                | ܶழ |ห ܶห + ଵ
ସ
∑ | ܶ|ଶ

ୀଵ ) − ଵ

ଶ
−(݃)ߜ| ଶ|ܩ||1 + ଵ

ସ
|ܩ|2) + 1)݃ − ଵ

ସ
 ,|ܩ|
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where ߜ(݃) = 0 for even ݃, ߜ(݃) = 1 for odd ݃. 
 

Proof. We divide the edge of ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ ) into the following groups:  
(ܽ) the edges belonging to the tree ܶ, ݅ = 1, 2, … ,݃; (ܾ) the edges belonging to the 

cycle ܥ. For the edge ݁ = ݒݑ ∈ )ܧ ܶ), we assume that ݀(ݒ,ݑ| ܶ) > ,ݒ)݀ |ݒ ܶ) for 
 ݅ = 1,2, … ,݃. For any vertex ݓ ∈ ܸ( ܶ), it is counted ݀(ݓ, |ݒ ܶ) times in the sum 
∑ ݊௨∈ா(்) (݁| ܶ) for the edges in the path from ݓ to ݒ. Thus ∑ ݊௨∈ா(்) (݁| ܶ) =
|ݒ)ܦ ܶ) for ݅ = 1,2, … ,݃, see [15]. Note that ݉௨(݁| ܶ) = ݊௨(݁| ܶ) − 1 and ݉௩(݁| ܶ) =
݊௩(݁| ܶ)− 1. The contributions to ܵݖ∗(ܩ) pertaining to the edges of type (ܽ) are ܣ =
∑ ∑ ቀ݉௨(݁|ܩ) + బ(|ீ)

ଶ
ቁ ቀ݉௩(݁|ܩ) + బ(|ீ)

ଶ
ቁ∈ா(்)


ୀଵ . 

    = ∑ ∑ ݉௨(݁| ܶ)(݉௩(݁| ܶ) + −|(ܩ)ܧ| )ܧ| ܶ)|)∈ா(்)

ୀଵ + ∑ ∑ (ଵ

ଶ
−|ܩ| ଵ

ସ
)∈ா(்)


ୀଵ  

    = ∑ ∑ ݉௨(݁| ܶ)݉௩(݁| ܶ)∈ா(்)

ୀଵ  

    +∑ −|(ܩ)ܧ|) )ܧ| ܶ)|)∑ ݉௨(݁| ܶ) +            ቀଵ
ଶ

−|ܩ| ଵ
ସ
ቁ −|ܩ|) ݃)∈ா(்)


ୀଵ  

    = ∑ ܹ( ܶ) −∑ (| ܶ|− 1)ଶ
ୀଵ


ୀଵ + ∑ −|ܩ|) | ܶ| + 1)

ୀଵ ∑ (݊௨(݁| ܶ)− 1)∈ா(்)  

    + ቀଵ
ଶ

−|ܩ| ଵ
ସ
ቁ −|ܩ|) ݃)  

    = ∑ ܹ( ܶ)

ୀଵ + ∑ |ܩ|) − | ܶ| + 1)

ୀଵ |ݒ)ܦ ܶ) −
ଵ
ଶ

ଶ|ܩ| + ଵ
ଶ

݃|ܩ| − ଵ
ସ

|ܩ| + ଵ
ସ
݃. 

If ݃ is even, then obviously, ݉௨(݁|ܩ) = ݊௨(݁|ܩ) − 1 and ݉௩(݁|ܩ) = ݊௩(݁|ܩ) − 1 .  
The contributions to ܵݖ∗(ܩ) pertaining to the edges of type (ܾ) are  

ܤ  = ∑ ቀ݉௨(݁|ܩ) + బ(|ீ)
ଶ

ቁ ቀ݉௩(݁|ܩ) + బ(|ீ)
ଶ

ቁ∈ா൫൯ .= ∑ ݊௨(݁|ܩ)݊௩(݁|ܩ)∈ா൫൯ . 

     = ∑ ∑ | ܶ|ห ܶห݀(ݒ, )ܥ|ݒ
ୀଵ


ୀଵ . 

If ݃ is odd, then ݉௨(݁|ܩ) = ݊௨(݁|ܩ) and ݉௩(݁|ܩ) = ݊௩(݁|ܩ). The contributions to 
  pertaining to the edges of type (ܾ) are (ܩ)∗ݖܵ

ܤ  = ∑ ቀ݉௨(݁|ܩ) + బ(|ீ)
ଶ

ቁ ቀ݉௩(݁|ܩ) + బ(|ீ)
ଶ

ቁ∈ா൫൯  

              = ∑ ቀ݊௨(݁|ܩ) + ଵ
ଶ
݊(݁|ܩ)ቁ ቀ݊௩(݁|ܩ) + ଵ

ଶ
݊(݁|ܩ)ቁ∈ா൫൯  

              = ∑ ∑ | ܶ|ห ܶห݀(ݒ, )ܥ|ݒ
ୀଵ −∑ | ܶ|ழ | ܶ|


ୀଵ − ଵ

ସ
∑ | ܶ|ଶ

ୀଵ + ଵ

ଶ
 .ଶ|ܩ|

As ܵݖ∗(ܩ) = ܣ +  ∎                                                                      .the result follows easily ,ܤ
 
Lemma 2.7. (The branch transformation) Let ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ, … , ܶ, … , ܶ ) ∈
ܥ with its unique cycle  (ߚ,ߚ2)࣯ = ݒ⋯ଶݒଵݒ  and ܰ = ∑ ݐ


ୀଵ ,ݒ)݀  ), whereܥ|ݒ

,ݒ ݒ ∈  and หܥ ܶห =  . in ܶݒ with root vertex ݑݓݒ . Suppose that there exist a pathݐ

Let ܩᇱ = ܩ − ݓݒ + ) Figure 3. If ,ݓݒ ܰ + ఋ()
ସ
(ݐ ≥ ( ܰ + ఋ()

ସ
)(1ݐ ≤ ݇ < ݈ ≤ ݃). 

Then ܵݖ∗(ܩ) >  .(ᇱܩ)∗ݖܵ
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Figure 3. The branch transformation of Lemma 2.7.  
 

 

Proof. Note that ݐᇱ = | ܶ
ᇱ| = | ܶ| − 2 = ݐ − 2 and ݐᇱ = | ܶ

ᇱ| = | ܶ| + 2 = ݐ + 2, by 
Theorem 2.6, we have that 

−(ܩ)∗ݖܵ  (ᇱܩ)∗ݖܵ = 4 ቂቀ ܰ + ఋ()
ସ
ቁݐ − ቀ ܰ + ఋ()

ସ
ቁቃݐ + 8݀൫ݒ ൯ܥหݒ, −

(݃)ߜ2                                              > 4 ቂቀ ܰ + ఋ()
ସ
ቁݐ − ቀ ܰ + ఋ()

ସ
ቁቃݐ ≥ 0. 

Hence the proof is completed.                                                                                               ∎ 
 

As ቀ ܰ
ᇱ + ఋ()

ସ
ᇱݐ ቁ − ቀ ܰ

ᇱ + ఋ()
ସ
ᇱቁݐ = ቀ ܰ + ఋ()

ସ
ቁݐ − ቀ ܰ + ఋ()

ସ
ቁݐ + 4݀൫ݒ ൯ܥหݒ, −

(݃)ߜ2 > 0 if ( ܰ + ఋ()
ସ
(ݐ ≥ ( ܰ + ఋ()

ସ
), we still have ቀݐ ܰ

ᇱ + ఋ()
ସ
ᇱݐ ቁ > ቀ ܰ

ᇱ + ఋ()
ସ
 ᇱቁݐ

for the new unicyclic graph ܩ′, and ܵݖ∗(ܩ) >  By Lemmas 2.5 and 2.7, we have .(ᇱܩ)∗ݖܵ
that:  
 
Lemma 2.8. Let ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ ) ∈  Then there exists a unicyclic graph .(ߚ,ߚ2)࣯
ᇱܩ = )ܥ ଵܶ

ᇱ, ଶܶ
ᇱ, … , ܶ

ᇱ) ∈ such that ܶ (ߚ,ߚ2)࣯
ᇱ = ଶ (1ܭ ݎ ଵܭ ≤ ݅ ≤ ݃ − 1) and 

)ܥ∗൫ݖܵ  ଵܶ, ଶܶ, … , ܶ )൯ ≥ )ܥ∗൫ݖܵ ଵܶ
ᇱ, ଶܶ

ᇱ, … , ܶ
ᇱ)൯. 

 
Next we give some transformations among ࣯(2ߚ,ߚ) which decrease the length of the 

unique cycle of the graph. By Lemma 2.8, there exist a unicyclic graph 
ᇱܩ = )ܥ ଵܶ

ᇱ, ଶܶ
ᇱ, … , ܶ

ᇱ) ∈ such that ܶ (ߚ,ߚ2)࣯
ᇱ = ଶ (1ܭ ଵ orܭ ≤ ݅ ≤ ݃ − (ܩ)∗ݖܵ ,(1 ≥

ܥ and the circuit (ᇱܩ)∗ݖܵ = ൯(ଶݒ)݀,(ଵݒ)ଵ be not changed. We have that ൫݀ݒݒ⋯ଶݒଵݒ =
(3, 3) or (2, 2) or (3, 2). Since ܩᇱ = ൫ܥ ଵܶ

ᇱ, ଶܶ
ᇱ, … , ܶ

ᇱ൯ ∈ ൯(ଶݒ)݀,(ଵݒ)if ൫݀ ,(ߚ,ߚ2)࣯ =

(2, 3), then ቀ݀൫ݒିଵ൯,݀൫ݒିଶ൯ቁ = (3, 3) or (2, 2) or (3, 2), we can reorder ܥ such that 

൫݀(ݒଵ),݀(ݒଶ)൯ = (3, 3) or (2, 2) or (3, 2). In the following, we consider the three cases, 
i.e. ൫݀(ݒଵ),݀(ݒଶ)൯ = (3, 3), (2, 2) and (3, 2), respectively. 
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Lemma 2.9. Let ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ ) ∈ such that ܶ (ߚ,ߚ2)࣯ = ଶ , 1ܭ  ଵ  orܭ ≤ ݅ ≤ ݃ −
1, and the cycle length ݃ ≥ 5. If ݀(ݒଵ) = (ଶݒ)݀  = 3, let ܩᇱ = ܩ + ଷݒݒ + ଷݒଵݒ − ଵݒݒ −
(ܩ)∗ݖܵ ଶ, thenݒଵݒ >  .(ᇱܩ)∗ݖܵ
 
Proof. As ܩ ∈ ′ܩ then ,(ߚ,ߚ2)࣯ ∈  By Theorem 2.6, we have that .(ߚ,ߚ2)࣯

−(ܩ)∗ݖܵ (ᇱܩ)∗ݖܵ  ≥  [−12− 6| ଷܶ|− |ଷݒ)ܦ4 ଷܶ)] 
                                                               +  [16− ߚ8 + 6| ଷܶ| + |ଷݒ)ܦ4 ଷܶ)] + ߚ2 + ଵ

ଶ
 

                                                           +4∑ | ܶ

ୀସ ห݀൫ݒଵ,ݒหܥ൯ + 4∑ | ܶ


ୀସ ห݀൫ݒଶ,  ൯ܥหݒ

                                                           +2| ଷܶ|∑ ห ܶห݀൫ݒଷ,ݒหܥ൯

ୀସ + 8 + 12| ଷܶ| 

                                                           −2(4 + | ଷܶ|)∑ ห ܶห݀൫ݒଷ,ݒหܥିଶ൯

ୀସ  

4)(݃)ߜ−                                                            + 4| ଷܶ|) + 2)(݃)ߜ + 2| ଷܶ|) 

                                                               ≥ ൬ଶହ
ଶ
− +൰(݃)ߜ2 ൫12 − |൯(݃)ߜ2 ଷܶ|−  ߚ6

                                                               + 4∑ ห ܶห݀൫ݒଵ,ݒหܥ൯

ୀସ  +4∑ ห ܶห݀൫ݒଶ,ݒหܥ൯


ୀସ . 

                                                               +2| ଷܶ|∑ ห ܶห݀൫ݒଷ,ݒหܥ൯

ୀସ  

                                                               −2(4 +  | ଷܶ|)∑ ห ܶห݀൫ݒଷ,ݒหܥିଶ൯

ୀସ  

(݅) If the cycle length ݃ is odd, then 

−(ܩ)∗ݖܵ  (ᇱܩ)∗ݖܵ ≥ ଶଵ
ଶ

+ 10| ଷܶ|− ߚ6 + 12∑ ห ܶห + 8|ܶశయ
మ

శభ
మ
ୀସ | + (4 + 2| ଷܶ|)|ܶశఱ

మ
| 

                               +(4 + 4| ଷܶ|)∑ | ܶ|

ୀశళమ

 

                               = − ଷ
ଶ

+ 7| ଷܶ| + 9∑ ห ܶห + 5|ܶశయ
మ

శభ
మ

ୀସ | + (1 + 2| ଷܶ|)|ܶశఱ
మ

| 

                               + (1 + 4| ଷܶ|)∑ ห ܶห > 0
ୀశళమ

. 

(݅݅) If the cycle length ݃ is even, then 

−(ܩ)∗ݖܵ  (ᇱܩ)∗ݖܵ ≥ ଶହ
ଶ

+ 12| ଷܶ|− ߚ6 + 12∑ ห ܶห + 4|ܶ
మାଶ


మାଵ
ୀସ | 

                               + (4 + 4| ଷܶ|)∑ ห ܶห

ୀమାଷ

 

                               = ଵ
ଶ

+ 9| ଷܶ| + 9∑ ห ܶห + |ܶ
మାଶ


మାଵ
ୀସ | + (1 + 4| ଷܶ|)∑ ห ܶห


ୀమାଷ

> 0. 

So, the proof is completed.                                                                                                    ∎ 
 
Lemma 2.10. Let ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ ) ∈ such that ܶ ，(ߚ,ߚ2)࣯ = ,ଶܭ ଵ orܭ 1 ≤ ݅ ≤
݃ − 1) and the cycle length ݃ ≥ 5. If ݀(ݒଵ) = (ଶݒ)݀  = 2, let ܩᇱ = ܩ + ଷݒݒ −  ଵ, thenݒݒ
(ܩ)∗ݖܵ >  .(ᇱܩ)∗ݖܵ
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Proof. As ܩ ∈ ′ܩ then ,(ߚ,ߚ2)࣯ ∈  By Theorem 2.6, we have that .(ߚ,ߚ2)࣯
(ܩ)∗ݖܵ − (ᇱܩ)∗ݖܵ ≥ [−1 − 3| ଷܶ| − |ଷݒ)ܦ2 ଷܶ)] + [3− ߚ6 + 3| ଷܶ| + |ଷݒ)ܦ2 ଷܶ)] 
ߚ2 +                               + ଵ

ଶ
+ 2∑ | ܶ


ୀସ ห݀൫ݒଵ, ൯ܥหݒ + 2∑ | ܶ


ୀସ ห݀൫ݒଶ,ݒหܥ൯ 

                              + 2| ଷܶ|∑ ห ܶห݀൫ݒଷ, ൯ܥหݒ

ୀସ + 2 + 6| ଷܶ| 

                              − 2(2 + | ଷܶ|)∑ ห ܶห݀൫ݒଷ, ିଶ൯ܥหݒ

ୀସ  

1)(݃)ߜ −                               + 2| ଷܶ|) + ቀଵ(݃)ߜ
ଶ

+ | ଷܶ|ቁ 

                              ≥ ൬ଽ
ଶ
− ଵ

ଶ
+൰(݃)ߜ ൫6 − |൯(݃)ߜ ଷܶ|− ߚ4 + 2∑ ห ܶห݀൫ݒଵ, ൯ܥหݒ


ୀସ  

                             + 2∑ ห ܶห݀൫ݒଶ,ݒหܥ൯ + 2| ଷܶ|∑ ห ܶห݀൫ݒଷ, ൯ܥหݒ

ୀସ


ୀସ  

                             −2(2 + | ଷܶ|)∑ ห ܶห݀൫ݒଷ,ݒหܥିଶ൯

ୀସ . 

 
(݅) If the cycle length ݃ is odd. 

(ܩ)∗ݖܵ − (ᇱܩ)∗ݖܵ ≥ 4 + 5| ଷܶ| − ߚ4 + 6∑ ห ܶห + 4|ܶశయ
మ

శభ
మ

ୀସ | + (2 + 2| ଷܶ|)|ܶశఱ
మ

|. 

                              +(2 + 4| ଷܶ|)∑ ห ܶห

ୀశళమ

 

                              = 3| ଷܶ| + 4∑ ห ܶห+ 2|ܶశయ
మ

శభ
మ

ୀସ | + 2| ଷܶ||ܶశఱ
మ

| + 4| ଷܶ|∑ ห ܶห > 0
ୀశళమ

. 

 
(݅݅) If the cycle length ݃ is even. 

−(ܩ)∗ݖܵ  (ᇱܩ)∗ݖܵ ≥ ଽ
ଶ

+ 6| ଷܶ|− ߚ4 + 6∑ ห ܶห+ 2|ܶ
మାଶ


మାଵ
ୀସ | + (2 + 4| ଷܶ|)∑ ห ܶห


ୀమାଷ

 

                               = ଵ
ଶ

+ 4| ଷܶ| + 4∑ ห ܶห

మାଵ
ୀସ + 4| ଷܶ|∑ ห ܶห


ୀమାଷ

> 0. 

Hence, the proof is completed.                                                                                              ∎ 
 
Lemma 2.11. Let ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ ) ∈ such that ܶ (ߚ,ߚ2)࣯ = ,ଶܭ ݎ ଵܭ 1 ≤ ݅ ≤ ݃ −
1, and the cycle length ݃ ≥ 5. If ݀(ݒଵ) = 3, (ଶݒ)݀ = 2, let ܩᇱ = ܩ + ଷݒݒ + ଷݒଵݒ −
ଵݒݒ − (ܩ)∗ݖܵ ଶ, thenݒଵݒ >  .(ᇱܩ)∗ݖܵ
 
Proof. As ܩ ∈ ′ܩ then ,(ߚ,ߚ2)࣯ ∈   ,By Theorem 2.6 .(ߚ,ߚ2)࣯
(ܩ)∗ݖܵ − (ᇱܩ)∗ݖܵ ≥ −9 + [11− ∑4 + [ߚ6 | ܶ


ୀସ ห݀൫ݒଵ, ൯ܥหݒ + 2∑ | ܶ


ୀସ ห݀൫ݒଶ,ݒหܥ൯ 

                            +2∑ ห ܶห݀൫ݒଷ,ݒหܥ൯

ୀସ + 14 − 8∑ ห ܶห݀൫ݒଷ,ݒหܥିଶ൯


ୀସ   

(݃)ߜ5−                             + ହ
ଶ
(݃)ߜ + ߚ2 + ଵ

ଶ
  

                            ≥  ൬ଷଷ
ଶ
− ହ

ଶ
൰(݃)ߜ − + ߚ4  4∑ ห ܶห݀൫ݒଵ, ൯ܥหݒ


ୀସ   
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                  + 2∑ ห ܶห݀൫ݒଶ,ݒหܥ൯

ୀସ  +2∑ ห ܶห݀൫ݒଷ, ൯ܥหݒ − 8∑ ห ܶห݀൫ݒଷ, ିଶ൯ܥหݒ


ୀସ


ୀସ . 

 
(݅) If the cycle length ݃ is odd, then 

(ܩ)∗ݖܵ − (ᇱܩ)∗ݖܵ ≥ ଶ଼
ଶ
− ߚ4 + 10∑ ห ܶห + 6|ܶశయ

మ

శభ
మ
ୀସ | + 4|ܶశఱ

మ
| + 6∑ | ܶ|


ୀశళమ

. 

                                           = 6 + 8∑ ห ܶห + 4|ܶశయ
మ

శభ
మ
ୀସ | + 2|ܶశఱ

మ
| + 4∑ ห ܶห > 0

ୀశళమ
. 

(݅݅) If the cycle length ݃ is even, then 

(ܩ)∗ݖܵ − (ᇱܩ)∗ݖܵ ≥ ଷଷ
ଶ
− ߚ4 + 12∑ ห ܶห + 4|ܶ

మାଶ


మାଵ
ୀସ | + 8∑ | ܶ|


ୀమାଷ

. 

                              = ଵ
ଶ

+ 10∑ ห ܶห+ 2|ܶ
మାଶ


మାଵ
ୀସ | + 6∑ ห ܶห


ୀమାଷ

> 0. 

The proof is now completed.                                                                                                 ∎ 
 

 
 Figure 4. Seven conjugated unicyclic graphs with ߚ = 3. 
 
Theorem 2.12. Let ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ ) ∈ ࣯(6,3). Then ܵݖ∗(ܪଵ) < (ଶܪ)∗ݖܵ <
(ଷܪ)∗ݖܵ < (ସܪ)∗ݖܵ < (ହܪ)∗ݖܵ < (ܪ)∗ݖܵ < ܪ where ,(ܪ)∗ݖܵ , 1 ≤ ݅ ≤ 7, be shown in 
Figure 4. 
 
Proof. There are only seven conjugated unicyclic graphs in ࣯(6,3), which was shown in 
Figure 4. By calculating directly, we have that  

(ଵܪ)∗ݖܵ = ଵଷଽ
ସ

(ଶܪ)∗ݖܵ  , = ଵସଵ
ସ

(ଷܪ)∗ݖܵ  , = ଵହଵ
ସ

(ସܪ)∗ݖܵ  , = ଽ
ଶ

, 

(ହܪ)∗ݖܵ                       = ଼ଷ
ଶ

(ܪ)∗ݖܵ   , = ଵ଼
ସ

(ܪ)∗ݖܵ  , = 54. 
So we have that ܵݖ∗(ܪଵ) < (ଶܪ)∗ݖܵ < (ଷܪ)∗ݖܵ < (ସܪ)∗ݖܵ < (ହܪ)∗ݖܵ < (ܪ)∗ݖܵ <
 ■                                                                                                  .The result follows .(ܪ)∗ݖܵ
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Figure 5. Seven conjugated unicyclic graphs. 

 
Theorem 2.13. Let ܩ = )ܥ ଵܶ, ଶܶ, … , ܶ ) ∈ ߚ) (ߚ,ߚ2)࣯ ≥ 4).  
(݅) If 4 ≤ ߚ ≤ 7, then ܵݖ∗(ܩ) ≥ ଶߚ5 − 

ଶ
ߚ + ଵ

ସ
, with equality if and only if ܩ ≅  ;ଵܩ

(݅݅) If ߚ ≥ 8, then ܵݖ∗(ܩ) ≥ ଶߚ4 + ଵଵ
ଶ
ߚ − 11, with equality if and only if ܩ ≅  ;ସܩ

 
Proof. By using Lemmas 2.7, 2.9, 2.10 and 2.11 repeatedly, the final graphs are {ܩ}, 1 ≤
݅ ≤ 7, see Figure 5. By calculating directly, we have that 

(ଵܩ)∗ݖܵ = ଶߚ5 − 
ଶ
ߚ + ଵ

ସ
, 

(ଶܩ)∗ݖܵ  = ଶߚ5 + ଵ
ଶ
ߚ − ସହ

ସ
, 

(ଷܩ)∗ݖܵ  = ଶߚ5 − ଵ
ଶ
ߚ − ଶଷ

ସ
, 

(ସܩ)∗ݖܵ     = ଶߚ4 + ଵଵ
ଶ
ߚ − 11, 

(ହܩ)∗ݖܵ      = ଶߚ4 + ଵହ
ଶ
ߚ − 19, 

(ܩ)∗ݖܵ     = ଶߚ4 + ଷହ
ଶ
ߚ − 55, 

(ܩ)∗ݖܵ     = ଶߚ4 + ଷଵ
ଶ
ߚ − 43. 

Then, we have that 
(ܩ)∗ݖܵ     ≥ (ଵܩ)∗ݖܵ = ଶߚ5 − 

ଶ
ߚ + ଵ

ସ
, for 4 ≤ ߚ ≤ 7, 

(ܩ)∗ݖܵ ≥ (ସܩ)∗ݖܵ = ଶߚ4 + ଵଵ
ଶ
ߚ − 11, for ߚ ≥ 8. 

The result follows.                                                                                                                  ■ 
 
3. ON REVISED EDGE-SZEGED OF THE JOIN OF GRAPHS 

In the section, we consider revised edge-Szeged index of the join graph. The join graph of 
ܩ denoted by ,ܪ and ܩ ∨ ܩ)ܸ is the graph with vertex set ,ܪ ∨ (ܪ =  and ,(ܪ)ܸ ⋃ (ܩ)ܸ
with edge set ܩ)ܧ ∨ (ܪ = ݑ | ݒݑ} ⋃(ܪ)ܧ ⋃ (ܩ)ܧ ∈ ,(ܩ)ܸ ݒ ∈  For the revised .{(ܪ)ܸ
edge-Szeged index of the graph ܩ, let |ܩ)ܧ ∨ |(ܪ = ݉, we have 
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(ܩ)∗ݖܵ = ∑ (݉௨(݁) + బ()
ଶ

)ୀ௨௩∈ா(ீ) (݉௩(݁) + బ()
ଶ

). 

 = ଵ
ସ
∑ (݉ + ݉௨(݁)−݉௩(݁))ୀ௨௩∈ா(ீ) (݉ + ݉௩(݁)−݉௨(݁)). 

= య

ସ
− ଵ

ସ
∑ (݉௨(݁)−݉௩(݁))ଶୀ௨௩∈ா(ீ) . 

 
Theorem 3.1. Let ܩ and ܪ be simple graphs, where |ܩ)ܧ ∨ |(ܪ = |ܩ| ,݉ = ݊ଵ, |(ܩ)ܧ| =

݉ଵ, |ܪ| = ݊ଶ and |(ܪ)ܧ| = ݉ଶ. Then ܵݖ∗(ܩ ∨ (ܪ  = య

ସ
− ଵ

ସ
( ଵܵ + ܵଶ + ܵଷ), where 

ଵܵ = ∑ [ቀ݀ଶீ(ݑ) + ቁ(ݑ)ீ݀ − ቀ݀ଶீ(ݒ) + (ீ)ቁ]ଶୀ௨௩∈ா(ݒ)ீ݀ , 

ܵଶ = ∑ [൫݀ଶு(ݑ) + ݀ு(ݑ)൯ − ൫݀ଶு(ݒ) + ݀ு(ݒ)൯]ଶୀ௨௩∈ா(ு) , 

ܵଷ = ∑ [൫݀ீ(ݑ) − ݀ு(ݒ)൯ + (݊ଶ − ݊ଵ) + (݉ଶ −݉ଵ) + ቀ݀ଶீ(ݑ)− ݀ଶு(ݒ)ቁ +ୀ௨௩∈ாᇲ

(ݒ)ுݐ)            −  .ଶ[((ݑ)ீݐ
 

Proof. We divide the edge of ܩ ∨ ᇱܧ and (ܪ)ܧ ,(ܩ)ܧ :into three groups ܪ = ݒݑ} ∶ ݑ ∈
,(ܩ)ܸ ݒ ∈   .{(ܪ)ܸ

Case 1. ݁ = ݒݑ ∈ ′݁ When .(ܩ)ܧ = ′ݒ′ݑ ∈ ′ݑ or (ܪ)ܧ ∈ ′ݒ ,(ܩ)ܸ ∈ ᇱݑ ,(ܪ)ܸ ≠
,ݑ ,ݑ)then ݀ீ∨ு ,ݒ ݁ᇱ) = ݀ீ∨ு(ݒ, ݁ᇱ) = 1. When ݁′′ = ′′ݒ′′ݑ ∈ ,ݑ)ீ݀ and (ܩ)ܧ ݁ᇱ′) ≥
,ݒ)ீ݀,2 ݁ᇱ′) ≥ 2, then ݀ீ∨ு(ݑ, ݁ᇱ′) = ݀ீ∨ு(ݒ, ݁ᇱ′) = 2. Let ீܰ

ᇱ (ݑ) =  and {ݒ}\(ݑ)ܰீ
ீܰ
ᇱ (ݑ) = ଵܰ(ݑ) ∪  ଶܰ(ݑ) ∪ ଷܰ(ݑ), where 

 ଵܰ(ݑ) = ݓ} ∈ ீܰ
ᇱ  ,{ݒݑ is in a triangle that contains edge ݓ |(ݑ)

ଶܰ(ݑ) = ݓ} ∈ ீܰ
ᇱ  ,{ݒݑ is in a quadrilateral that contains edge ݓ |(ݑ)

ଷܰ(ݑ) = ீܰ
ᇱ (ݑ) ∖ { ଵܰ(ݑ) ∪ ଶܰ(ݑ)}. 

Then, one known that  
  ݉௨(݁|ܩ ∨ (ܪ + ∑ (ݓ)ீ݀) − 2)௪∈ேభ(௨) = ݊ଶ + (ݑ)ீ݀) − 1) + ∑ (ݓ)ீ݀) − 2)௪∈ேభ(௨)  
                                                                  + ∑ (ݓ)ீ݀) − 2)௪∈ேమ(௨) + ∑ (ݓ)ீ݀) − 1)௪∈ேయ(௨)  
                                                                  = ݊ଶ + (ݑ)ீ݀) − 1) + ∑ (ݓ)ீ݀ −௪∈ேభ(௨) | ଵܰ(ݑ)| 
                                                            +∑ ௪∈ேమ(௨)(ݓ)ீ݀  −| ଶܰ(ݑ)| + ∑ ௪∈ேయ(௨)(ݓ)ீ݀  
                                                                 − (| ଵܰ(ݑ)|+| ଶܰ(ݑ)|+| ଷܰ(ݑ)|). 
                                                                 = ݊ଶ + ݀ଶீ(ݑ) − (ݒ)ீ݀ − | ଵܰ(ݑ)|− | ଶܰ(ݑ)|. 

Similarly, we have that ݉௩(݁|ܩ ∨ (ܪ + ∑ −(ݓ)ீ݀) 2)௪∈ேభ(௩) = ݊ଶ + ݀ଶீ(ݒ) −
−(ݑ)ீ݀ | ଵܰ(ݒ)| − | ଶܰ(ݒ)|. It is obvious that ∑ (ݓ)ீ݀) − 2)௪∈ேభ(௨) =∑ (ݓ)ீ݀) −௪∈ேభ(௩)

2). Then,  

ଵܵ = ∑ (݉௨(݁)−݉௩(݁))ଶ = ∑ [ቀ݀ଶீ(ݑ) + ቁ(ݑ)ீ݀ − ቀ݀ଶீ(ݒ) + (ீ)ቁ]ଶ௨௩∈ா(ீ)௨௩∈ா(ݒ)ீ݀ . 
Case 2. ݁ = ݒݑ ∈  Similarly, we have that .(ܪ)ܧ

ܵଶ = ∑ (݉௨(݁)−݉௩(݁))ଶ = ∑ [൫݀ଶு(ݑ) + ݀ு(ݑ)൯ − ൫݀ଶு(ݒ) + ݀ு(ݒ)൯]ଶ௨௩∈ா(ு)௨௩∈ா(ீ) . 
Case 3. ݁ = ݒݑ ∈ ܩ|݁)One known that ݉௨ .′ܧ ∨ (ܪ = (ݑ)ீ݀ + (݊ଶ − 1) + (݉ଶ −

݀ଶு(ݒ) + ܩ|݁)and ݉௩ ((ݒ)ுݐ ∨ (ܪ = ݀ு(ݒ) + (݊ଵ − 1) + (݉ଵ − ݀ଶீ(ݑ) +  ,Thus .((ݑ)ீݐ
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 ܵଷ = ∑ [൫݀ீ(ݑ)− ݀ு(ݒ)൯ + (݊ଶ − ݊ଵ) + (݉ଶ −݉ଵ) + ቀ݀ଶீ(ݑ)− ݀ଶு(ݒ)ቁ  +ୀ௨௩∈ாᇲ

(ݒ)ுݐ)           −  .ଶ[((ݑ)ீݐ

In summary, we have that ܵݖ∗(ܩ ∨ (ܪ  = య

ସ
− ଵ

ସ
( ଵܵ + ܵଶ + ܵଷ) and the result follows.    ■ 

 
By Theorem 3.1, one can calculate revised edge-Szeged index of some special 

graphs, such as the complete bipartite graph ܭ, = തതതതܭ  ∨ തതതത , the wheel graph ܹܭ  =
ଵܭ  ∨ ݊ ,ିଵܥ  ≥ 5, the fan graph ܨ = ଵܭ  ∨  ܲିଵ, ݊ ≥ 6. 

,൯ܭ∗൫ݖܵ = തതതതܭ)∗ݖܵ  ∨ (തതതതܭ  =
1
4݊݉

(݊ଶ݉ଶ − (݊ − ݉)ଶ), 

)∗ݖܵ ܹ) = ଵܭ)∗ݖܵ  ∨ (ିଵܥ  =
1
4

(݊ − 1)(4݊ଶ + 20݊ − 73), (݊ ≥ 5), 

(ܨ)∗ݖܵ = ଵܭ)∗ݖܵ  ∨  ܲିଵ) =
1
4

(4݊ଷ + 8݊ଶ − 118݊ + 203), (݊ ≥ 6). 
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