Some Topological Indices of Edge Corona of Two Graphs

CHANDRASHEKAR ADIGA1,*, MALPASHREE RAJU1, RAKSHITH BILLVA RAMANNA2
AND ANITHA NARASIMHAMURTHY3

1Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore–570 006, India
2Department of Mathematics, Vidyavardhaka College of Engineering, Mysore–570002, India
3Department of Mathematics, PES University, Bangalore–560 085, India

ARTICLE INFO

Article History:
Received: 13 August 2015
Accepted: 12 March 2017
Published online 30 September 2019
Academic Editor: Hassan Yousefi–Azari

Keywords:
Edge corona
Wiener index
Zagreb index
Degree distance index
Gutman index

ABSTRACT

In this paper, we compute the Wiener index, first Zagreb index, second Zagreb index, degree distance index and Gutman index of edge corona of two graphs.

1. INTRODUCTION

Throughout this paper we consider only simple connected graphs, i.e., connected graphs without loops and multiple edges. Let $G = (V,E)$ be a graph with vertex set $V(G) = \{v_1,v_2,\ldots,v_n\}$ and edge set $E(G) = \{e_1,e_2,\ldots,e_m\}$. We denote the shortest distance between two vertices u and v in G by $d(u,v)$ and the degree of a vertex v in G by $d(v)$. A topological index is a real number derived from the structure of a graph, which is invariant under graph isomorphism. The Wiener index $W(G)$ of a graph G is defined as

*Corresponding Author (Email address: c_adiga@hotmail.com)
DOI: 10.22052/ijmc.2017.34313.1132
$W(G) = \sum_{(u,v) \in \mathcal{V}(G)} d(u,v)$. The Wiener index is a classical distance based topological index. It was first introduced by H. Wiener [26] with an application to chemistry. The Wiener index has been extensively studied by many chemists and mathematicians. For more details about Wiener index the reader may refer to [5, 6, 12, 16, 20]. The first and second Zagreb indices of a graph denoted by $M_1(G)$ and $M_2(G)$, respectively, are degree based topological indices introduced by Gutman and Trinajstić [15]. These two indices are defined as

$$M_1(G) = \sum_{e=uv \in E(G)} (d(u) + d(v)) = \sum_{v \in \mathcal{V}(G)} d(v)^2,$$

and $M_2(G) = \sum_{e=uv \in E(G)} d(u)d(v)$. More information about Zagreb indices can be found in [13, 14, 19]. The degree distance, $DD(G)$, and Gutman index $Gut(G)$ of a graph G are defined, respectively, as

$$DD(G) = \sum_{(u,v) \in \mathcal{V}(G)} (d_G(u) + d_G(v))d_G(u,v),$$

$$Gut(G) = \sum_{(u,v) \in \mathcal{V}(G)} d_G(u)d_G(v)d_G(u,v).$$

The degree distance was introduced independently by A. A. Dobrynin, A. A. Kochetova [7] and Gutman [11]. The Gutman index was introduced by Gutman [11] which was earlier known as modified Schultz index. Studies on degree distance and Gutman index can be found in [2, 3, 8, 21, 25] and the references cited therein.

The corona [9] of two graphs G and H is the graph obtained by taking one copy of G, $|\mathcal{V}(G)|$ copies of H and joining i-th vertex of G to every vertex in the i-th copy of H. The edge corona [17] of two graphs G and H denoted by $G \triangleleft H$ is obtained by taking one copy of G and $|\mathcal{E}(G)|$ copies of H and joining end vertices of i-th edge of G to every vertex in the i-th copy of H. Various researchers studied the topological indices of the corona of two graphs, for example see [23, 27]. Motivated by these works, in this paper we compute some topological indices of edge corona of two graphs. In Section 2, we derive formulas for the Wiener index and Zagreb indices of edge corona of two graphs. As special cases of these formulas we express Wiener index and Zagreb indices of edge corona $P_n \triangleleft H$, $C_n \triangleleft H$ and $K_n \triangleleft H$, where H is an arbitrary graph, in terms of vertices and edges. In Section 3, we compute the degree distance and Gutman index of edge corona of two graphs and obtain formula in terms of vertices and edges for degree distance and Gutman index of edge corona of two graphs G and H, when $G = C_n \cup P_n$ or K_n and $H = C_m \cup P_m \cup K_m$ or \overline{K}_m.

2. WIENER INDEX, FIRST ZAGREB INDEX AND SECOND ZAGREB INDEX OF EDGE CORONA OF TWO GRAPHS

Let G_1 and G_2 be graphs with vertex sets $V(G_1) = \{v_1, v_2, \ldots, v_{n_1}\}$, $V(G_2) = \{u_1, u_2, \ldots, u_{n_2}\}$, and edge sets $E(G_1) = \{e_1, e_2, \ldots, e_{m_1}\}$ and $E(G_2) = \{e'_1, e'_2, \ldots, e'_{m_2}\}$. Let the vertex set of i-th copy
Some Topological Indices of Edge Corona of Two Graphs

Let \(e = uv \) and \(f = xy \) be two distinct edges in \(G \). The distance \(d_G(e,f) \) between two edges \(e \) and \(f \) is given by \(\min\{ d_G(x,u), d_G(x,v), d_G(y,u), d_G(y,v) \} \). The edge-Wiener index \(\mathcal{W}_w(G) \) \cite{4} of a graph \(G \), is the sum of all distances between unordered pairs of vertices in the line graph \(L(G) \). Equivalently, edge-Wiener index of \(G \) is the Wiener index of the line graph \(L(G) \) of \(G \) i.e.,

\[
\mathcal{W}_w(G) = W(L(G)) = \sum_{(xy,uv) \in E(G)} (\min\{d_G(x,u),d_G(x,v),d_G(y,u),d_G(y,v)\} + 1).
\]

Note that in literature different definitions of the edge-Wiener index and distance between two edges are proposed; for example see \cite{18}. The vertex PI index \([1] \) of a graph \(G \) is defined as

\[
\text{PI}(G) = \sum_{v \in V(G)} |d_G(v)| + |d_G(N[v])|/2,
\]

where \(n_{e=uv}(u|G) \) is the number of vertices in \(G \) that are closer to \(u \) than \(v \) in \(G \). It may be noted that if \(G \) is a bipartite graph, then \(\text{PI}(G) = |V(G)||E(G)| \).

We need the following two lemmas to prove our main results. As the proofs directly follow from the definition of the edge corona, we omit the details.

Lemma 2.1 We have

1. \(d_{G_1 \odot G_2}(v_j) = (n_2 + 1) d_{G_i}(v_j) \), \(v_j \in V(G_1) \).

2. \(d_{G_1 \odot G_2}(u_{ij}) = d_{G_2}(u_{ij}) + 1 \), \(u_{ij} \in V(G_2) \).

Lemma 2.2 We have

1. \(d_{G_1 \odot G_2}(v_j) = d_{G_i}(v_j) \), \(v_j \in V(G_1) \).

2. \(d_{G_1 \odot G_2}(u_{ij},u_{ik}) = \begin{cases} 1, & u_{ij}, u_{ik} \in E(G_2) \\ 2, & u_{ij}, u_{ik} \in E(G_2) \end{cases} \), \(u_{ij}, u_{ik} \in V(G_2) \).

3. \(d_{G_1 \odot G_2}(u_{ij},u_{km}) = d_{G_i}(e_{ij},e_{km}) + 2 \), \(u_{ij} \in V(G_1) \) and \(u_{km} \in V(G_2) \).

4. \[d_{G_1 \odot G_2}(e_{ij},e_{km}) = \begin{cases} d_{G_i}(v_j,v_k) + 1, & u_{ij}, u_{km} \in E(G_2) \\ 2, & u_{ij}, u_{km} \in V(G_2) \end{cases} \]

where \(v_jv_m = e_{ij} \).

Theorem 2.3 The Wiener index of \(G_1 \odot G_2 \) is given by
$$W(G_1 \diamond G_2) = W(G_1) + n_2^2 W_e(G_1) + \frac{n_2}{2} (DD(G_1) - Pl(G_1)) + m_1 n_2 \left(\frac{n_2}{2} (m_1 + 1) + n_1 - 1 \right) - m_1 m_2.$$

Proof. We have

$$W(G_1 \diamond G_2) = A_1 + A_2 + A_3 + A_4,$$ \hspace{1cm} (2.1)

where

$$A_1 = \sum_{\{v_i, v_j\} \subseteq V(G_1)} d_{G_1 \diamond G_2}(v_i, v_j),$$

$$A_2 = \sum_{e_i \subseteq E(G_1)} \sum_{\{u_{ij}, u_{ik}\} \subseteq V_1(G_1)} d_{G_1 \diamond G_2}(u_{ij}, u_{ik}),$$

$$A_3 = \sum_{\{e_i, e_k\} \subseteq E(G_1)} \sum_{u_{ij} \in V_1(G_2), u_{km} \in V_2(G_2)} d_{G_1 \diamond G_2}(u_{ij}, u_{km}),$$

$$A_4 = \sum_{e_i \subseteq E(G_1)} \sum_{u_{ij} \in V_1(G_2), u_{k} \in V_2(G_2)} d_{G_1 \diamond G_2}(u_{ij}, u_{k}).$$

We now compute A_i for $i = 1, 2, 3, 4$. By Lemma 2.2, we have

$$A_1 = \sum_{\{v_i, v_j\} \subseteq V(G_1)} d_{G_1 \diamond G_2}(v_i, v_j) = \sum_{\{v_i, v_j\} \subseteq V(G_1)} d_{G_1}(v_i, v_j) = W(G_1),$$ \hspace{1cm} (2.2)

and

$$A_2 = \sum_{e_i \subseteq E(G_1)} \sum_{\{u_{ij}, u_{ik}\} \subseteq V_1(G_2)} d_{G_1 \diamond G_2}(u_{ij}, u_{ik}),$$

$$= \sum_{e_i \subseteq E(G_1)} \left(\sum_{u_{ij}, u_{ik} \in E_1(G_1)} 2 + \sum_{u_{ij}, u_{ik} \in E_2(G_1)} 1 \right)$$

$$= \sum_{e_i \subseteq E(G_1)} \left(\sum_{u_{ij}, u_{ik} \in V_1(G_2)} 2 - \sum_{u_{ij}, u_{ik} \in E_2(G_1)} 1 \right)$$

$$= \sum_{e_i \subseteq E(G_1)} (n_2 n_2 - 1 - m_2)$$

$$= m_1 (n_2 - 1 - m_2),$$ \hspace{1cm} (2.3)

We have

$$A_3 = \sum_{e_i, e_k \subseteq E(G_1)} \sum_{u_{ij} \in V_1(G_2), u_{km} \in V_2(G_2)} d_{G_1 \diamond G_2}(u_{ij}, u_{km}),$$

$$= \sum_{e_i, e_k \subseteq E(G_1)} \left(\sum_{u_{ij} \in V_1(G_2), u_{km} \in V_2(G_2)} (d_{G_1}(e_i, e_k) + 2) \right)$$

$$= n_2^2 \sum_{e_i, e_k \subseteq E(G_1)} (d_{G_1}(e_i, e_k) + 2)$$

$$= n_2^2 (W_e(G_1) + m_1 (m_1 - 1)/2).$$ \hspace{1cm} (2.4)

Using Lemma 2.2, the above equation can be rewritten as follows:

$$A_4 = n_2 \sum_{v_i, v_j \subseteq V(G_1)} \sum_{u_{ij} \in V_1(G_2), v_k \in V_2(G_2)} d_{G_1 \diamond G_2}(u_{ij}, u_{k})$$

$$+ \sum_{v_k \in V_2(G_1)} \sum_{u_{ij} \in V_1(G_2), v_k \in V_2(G_2)} d_{G_1 \diamond G_2}(u_{ij}, v_k)$$

$$= n_2 \left(\sum_{e_i \subseteq E(G_1)} d_{G_1}(v_j, v_k) + d_{G_1}(v_m, v_k) + d_{G_1}(v_j, v_k) + d_{G_1}(v_m, v_k) + 1/2 \right)$$

$$= n_2 \left(\sum_{e_i \subseteq E(G_1)} (d_{G_1}(v_j, v_k) + d_{G_1}(v_m, v_k)) \right).$$
Some Topological Indices of Edge Corona of Two Graphs

\[+ \sum_{e_i = \{v_i, v_k \} \in E(G_i)} 2n_i - (n_{e_i}(v_j \mid G_i) + n_{e_i}(v_m \mid G_i)) / 2 \]
\[= n_2(\sum_{v_j \in V(G_i)} \sum_{v_k \in V(G_i)} d_{G_i}(v_j, v_k) + 2n_i m_i - PL(G_i) / 2 \]
\[= n_2(\sum_{v_j \in V(G_i)} \sum_{v_k \in V(G_i)} d(v_j) d_{G_i}(v_j, v_k) + 2n_i m_i - PL(G_i) / 2 \]
\[= n_2(DD(G_i) + 2n_i m_i - PL(G_i)) / 2. \tag{2.5} \]

Using (2.2), (2.3), (2.4) and (2.5) in (2.1) the result follows.

Corollary 2.4 Let \(G_1 \) be a bipartite graph. Then the Wiener index of \(G_1 \odot G_2 \) is given by
\[W(G_1 \odot G_2) = W(G_1) + n_1^2 W_e(G_1) + n_2(DD(G_1) - n_1 m_1) / 2 + m_1 n_2 (n_1 (m_1 + 1) / 2 + n_1 - 1) - m_1 m_2. \]

We need the following lemmas for future references.

Lemma 2.5 [22] Let \(P_n \) and \(C_n \) denote the path and cycle on \(n \) vertices, respectively. Then
\[W(P_n) = n(n^2 - 1) / 6, \]
\[W(C_n) = \begin{cases} n^3 / 8, & \text{if } n \text{ is even} \\ n(n^2 - 1) / 8, & \text{if } n \text{ is odd}. \end{cases} \]

Lemma 2.6 [8, 24] Let \(P_n \) and \(C_n \) denote the path and cycle on \(n \) vertices, respectively. Then
\[DD(P_n) = n(n - 1)(2n - 1) / 3, \]
\[DD(C_n) = \begin{cases} n^3 / 2, & \text{if } n \text{ is even} \\ n(n^2 - 1) / 2, & \text{if } n \text{ is odd}. \end{cases} \]

It can be easily verified that \(W(K_n) = n(n - 1) / 2, DD(K_n) = n(n - 1)^2 / 4, PL(K_n) = n(n - 1), PL(P_n) = n(n - 1) \) and \(PL(C_{2n+1}) = 2n(2n + 1) \). Using these facts and also by applying above two lemmas in Theorem 2.3, we obtain the following corollary.

Corollary 2.7 Let \(G \) be a graph with \(n_1 \) vertices and \(m_1 \) edges. Then
1. \(W(P_n \odot G) = (n-1)((n_1 + 1)^2 n^2 + (n_1 + 1)^2 n - 6n_1 - 6m_1) / 6. \)
2. \(W(C_{2n} \odot G) = n((n+1)^2 n^2 + (n^2 + n - 1)2n_1 + n^2 - 2m_1). \)
3. \(W(C_{2n+1} \odot G) = (n+1/2)((n_1 + 1)^2 n^2 + (3n_1^2 + 4n_1 + 1)n + 2n^2 - 2m_1). \)
4. \(W(K_n \odot G) = (1/8)n(n-1)(3n_1^2 n^2 - 7n_1^2 n + 6m_1 + 8m_1 n - 12n_1 - 4m_1 + 4). \)
Theorem 2.8 The first Zagreb index of \(G_1 \bowtie G_2 \) is given by
\[
M_1(G_1 \bowtie G_2) = (n_2 + 1)^2 M_1(G_1) + m_1 (M_1(G_2) + 4n_2 + 8m_2).
\]

Proof. By Lemma 2.1, we have
\[
M_1(G_1 \bowtie G_2) = \sum_{x \in V(G_1 \bowtie G_2)} d_{G_1 \bowtie G_2}^2(x)
\]
\[
= \sum_{v \in V(G_1 \bowtie G_2)} d_{G_1 \bowtie G_2}^2(v) + \sum_{(v, v') \in E(G_1 \bowtie G_2)} d_{G_1 \bowtie G_2}^2(v, v')
\]
\[
= (n_2 + 1)^2 \sum_{v \in V(G_1 \bowtie G_2)} (d_{G_1 \bowtie G_2}(v)) + \sum_{(v, v') \in E(G_1 \bowtie G_2)} (d_{G_1 \bowtie G_2}(v, v'))
\]
\[
= (n_2 + 1)^2 M_1(G_1) + m_1 (M_1(G_2) + 8m_2 + 4n_2)
\]
\[
= (n_2 + 1)^2 M_1(G_1) + m_1 M_1(G_2) + 8m_1m_2 + 4n_2m_1.
\]

This completes the proof.

Theorem 2.9 The second Zagreb index of \(G_1 \bowtie G_2 \) is given by
\[
M_2(G_1 \bowtie G_2) = (n_2 + 1)^2 M_2(G_1) + m_1 M_1(G_2) + 2m_1 M_1(G_2) + 4m_1m_2 + 2(n_2 + 1)(m_2 + n_2)M_1(G_1).
\]

Proof. By Lemma 2.1, we have
\[
M_2(G_1 \bowtie G_2) = \sum_{x, y \in V(G_1 \bowtie G_2)} d_{G_1 \bowtie G_2}(x) d_{G_1 \bowtie G_2}(y)
\]
\[
= \sum_{(e, e') \in E(G_1 \bowtie G_2)} d_{G_1 \bowtie G_2}(e, e') + \sum_{(v, v') \in E(G_1 \bowtie G_2)} d_{G_1 \bowtie G_2}(v, v')
\]
\[
= (n_2 + 1)^2 \sum_{(e, e') \in E(G_1 \bowtie G_2)} d_{G_1 \bowtie G_2}(e, e') + \sum_{(v, v') \in E(G_1 \bowtie G_2)} d_{G_1 \bowtie G_2}(v, v')
\]
\[
= (n_2 + 1)^2 M_2(G_1) + m_1 M_2(G_2) + 2m_1 M_1(G_2) + 4m_1m_2 + 2(n_2 + 1)(m_2 + n_2)M_1(G_1).
\]

Hence the proof.

Using the facts that \(M_1(P_n) = 4n - 6 \) \(n \geq 2 \), \(M_2(P_n) = 4n - 8 \) \(n \geq 3 \), \(M_1(C_n) = M_2(C_n) = 4n \), \(M_1(K_n) = n(n - 1)^2 \), \(M_2(K_n) = n(n - 1)^3 / 2 \), in Theorems 2.8 and 2.9, we obtain the following corollaries.
Corollary 2.10 We have
1. \(M_1(P_n \odot P_m) = 4m^2n - 6m^2 + 24mn - 28m - 10n + 8 \).
2. \(M_1(C_n \odot C_m) = 4n(m^2 + 6m + 1) \).
3. \(M_1(P_n \odot C_m) = 4m^2n - 6m^2 + 24mn - 28m + 4n - 6 \).
4. \(M_1(C_n \odot P_m) = 4m^2n + 24mn - 10n \).
5. \(M_1(K_n \odot K_m) = (1/2)n(n - 1)(m + 1)^2(m + 2n - 2) \).
6. \(M_1(K_n \odot P_m) = n(n - 1)((n - 1)(m + 1)^2 + 8m - 7) \).
7. \(M_1(P_n \odot K_m) = (m + 1)^2(mn - m + 4n - 6) \).
8. \(M_1(K_n \odot C_m) = n(n - 1)((m + 1)^2n - m^2 + 6m - 1) \).
9. \(M_1(C_n \odot K_m) = m^3n + 6m^2n + 9mn + 4n \).
10. \(M_1(P_n \odot \overline{K_m}) = 4m^2n - 6m^2 + 12mn - 16m + 4n - 6 \).
11. \(M_1(C_n \odot \overline{K_m}) = 4n(m^2 + 3m + 1) \).
12. \(M_1(K_n \odot \overline{K_m}) = n(n - 1)((m + 1)^2(n - 1) + 2m) \).

Corollary 2.11 We have
1. \(M_2(P_n \odot P_m) = (20n - 32)m^2 + (32n - 44)m - 28n + 28 \).
2. \(M_2(C_n \odot C_m) = 20m^2n + 40mn + 4n \).
3. \(M_2(P_n \odot C_m) = (20n - 32)m^2 + (40n - 56)m + 4n - 8 \).
4. \(M_2(C_n \odot P_m) = 20m^2n + 32mn - 28n \).
5. \(M_2(K_n \odot K_m) = (1/4)n(n - 1)(m^2 + (4n - 5)m + 2(n - 1)^2)(m + 1)^2 \).
6. \(M_2(K_n \odot P_m) = (1/2)n(n - 1)(m^2n^2 + 6m^2n + 2mn^2 - 7m^2 + n^2 + 14m - 6n - 19) \).
7. \(M_2(P_n \odot K_m) = (1/2(n - 1)m^2 + (7n - 11)m + 8n - 16)(m + 1)^2 \).
8. \(M_2(K_n \odot C_m) = (1/2)n(n - 1)((m + 1)^2n^2 + (6m^2 + 4m - 2)n - 7m^2 + 10m + 1) \).
9. \(M_2(C_n \odot K_m) = (1/2)n(m^2 + 7m + 8)(m + 1)^2 \).
10. \(M_2(P_n \odot \overline{K_m}) = (12n - 20)m^2 + (16n - 28)m + 4n - 8 \).
11. \(M_2(C_n \odot \overline{K_m}) = 12m^2n + 16mn + 4n \).
12. \(M_2(K_n \odot \overline{K_m}) = (1/2)n(m + 1)(n - 1)((m + 1)n + 3m - 1) \).

3. Degree Distance and Gutman Index of Edge Corona of Two Graphs

For a graph \(G \), we define
It is easy to see that \(C(G_{2n+1}) = 4n + 2 \) and \(C(K_n) = n(n-1)^2/(n-2) \).

In this section, we compute the degree distance and Gutman index of edge corona of two graphs.

Theorem 3.1 The degree distance index of \(G_1 \circ G_2 \) is given by

\[
DD(G_1 \circ G_2) = (m_2 + 2n_2 + 1)DD(G_1) + 4n_2 (m_2 + n_2)W_1(G_1) + (1/2)n_2 (n_2 + 1)(2Gut(G_1) + C(G_1)) - (m_2 + n_2)PI(G_1) - m_1 M_1(G_2) + 2m_1 (m_2 + n_2)(n_1 + (m_1 + 1)n_2 - 2) - 4m_1 m_2 + m_2^2 n_2(n_2 + 1).
\]

Proof. We have

\[
DD(G_1 \circ G_2) = A_1 + A_2 + A_3 + A_4,
\]

where

\[
A_1 = \sum_{(v_i,v_j) \in V(G_1)} (d_{G_1 \circ G_2}(v_i) + d_{G_1 \circ G_2}(v_j)) d_{G_1 \circ G_2}(v_i, v_j),
\]

\[
A_2 = \sum_{e_{ij} \in E(G_1)} \sum_{[u_k,u_{ik}] \subseteq [V(G_1),0]} (d_{G_1 \circ G_2}(u_{ij}) + d_{G_1 \circ G_2}(u_{ik})) d_{G_1 \circ G_2}(u_{ij}, u_{ik}),
\]

\[
A_3 = \sum_{e_{ij} \in E(G_1)} \sum_{u_{ij} \in V(G_1), u_{ik} \in V(G_1)} (d_{G_1 \circ G_2}(u_{ij}) + d_{G_1 \circ G_2}(u_{ik})) d_{G_1 \circ G_2}(u_{ij}, u_{ik}),
\]

\[
A_4 = \sum_{e_{ij} \in E(G_1)} \sum_{u_{ij} \in V(G_1), u_{ik} \in V(G_1)} (d_{G_1 \circ G_2}(u_{ij}) + d_{G_1 \circ G_2}(u_{ik})) d_{G_1 \circ G_2}(u_{ij}, u_{ik}).
\]

Using Lemmas 2.1 and 2.2, \(A_1, A_2, A_3 \) and \(A_4 \) can be computed as follows:

\[
A_1 = (n_2 + 1) \sum_{(v_i,v_j) \in V(G_1)} (d_{G_1}(v_i) + d_{G_1}(v_j)) d_{G_1}(v_i, v_j)
= (n_2 + 1)DD(G_1).
\]

\[
A_2 = \sum_{e_{ij} \in E(G_1)} \sum_{[u_k,u_{ik}] \subseteq [V(G_1),0]} (d_{G_1 \circ G_2}(u_{ij}) + d_{G_1 \circ G_2}(u_{ik})) d_{G_1 \circ G_2}(u_{ij}, u_{ik})
= \sum_{e_{ij} \in E(G_1)} (2(n_2 - 1) \sum_{u \in V(G_1)} (d_{G_2}(u_{ij}) + d_{G_2}(u_{ik})) + 4)
= \sum_{e_{ij} \in E(G_1)} (4(n_2 - 1) m_2 + 4n_2 (n_2 - 1) - M_1(G_2) - 4m_2)
= 4(n_2 - 2) m_1 m_2 + 4m_1 n_2 (n_2 - 1) - m_1 M_2(G_2).
\]

\[
A_3 = \sum_{e_{ij} \in E(G_1)} (4(n_2 - 1) m_2 + 4n_2 (n_2 - 1) - M_1(G_2) - 4m_2)
= 4(n_2 - 2) m_1 m_2 + 4m_1 n_2 (n_2 - 1) - m_1 M_2(G_2).
\]

\[
A_4 = \sum_{e_{ij} \in E(G_1)} (4(n_2 - 1) m_2 + 4n_2 (n_2 - 1) - M_1(G_2) - 4m_2)
= 4(n_2 - 2) m_1 m_2 + 4m_1 n_2 (n_2 - 1) - m_1 M_2(G_2).
\]
Some Topological Indices of Edge Corona of Two Graphs

217

\[A_3 = \sum_{(e_i, e_k) \in E(G_1)} \sum_{u_j \in V(G_2) \cup V(G_2)} \left(d_{G_1 \circ G_2}(u_j) + d_{G_2 \circ G_2}(u_{km}) \right) d_{G_1 \circ G_2}(u_{ij}, u_{km}) \]

\[= 2n_2 \sum_{(e_i, e_k) \in E(G_1)} \left(d_{G_1}(u_i) + 2 \right) \left(d_{G_2}(u_{ij}) + 2 \right) \]

\[= 2n_2 \sum_{(e_i, e_k) \in E(G_1)} \left((d_{G_1}(e_i, e_k) + 2)(2m_2 + 2n_2) \right) \]

\[= 4n_2 (m_2 + n_2)(W_e(G_1) + m_1 (m_1 - 1)/2). \]

(3.4)

Thus,

\[A_4 = (m_2 + n_2)(DD(G_1) - PI(G_1)) + (1/2)n_2(n_2 + 1)(2Gut(G_1) + C(G_1)) \]

\[+ (m_2 + n_2)(2m_1n_1) + m_1^2n_2 (n_2 + 1). \]

(3.5)

Employing (3.2), (3.3), (3.4) and (3.5) in (3.1), we get the required result.

Corollary 3.2 Let \(G_1 \) be a bipartite graph. Then

\[DD(G_1 \circ G_2) = (m_2 + 2n_2 + 1)DD(G_1) + 4n_2 (m_2 + n_2)W_e(G_1) \]

\[+ n_2(n_1 + 1)Gut(G_1) - (m_2 + n_2)n_1m_1 - m_1 M_1(G_2) \]

\[+ 2m_1(n_2 + 1)(n_1 + (m_1 + 1)n_2 - 2) - 4m_1 m_2 + m_1^2n_2 (n_2 + 1). \]

Theorem 3.3 The Gutman index of \(G_1 \circ G_2 \) is given by

\[Gut(G_1 \circ G_2) = (n_2 + 1)(2m_2 + 3n_2 + 1)Gut(G_1) + (4m_1^2 + 8n_1m_2 + 4n_2^2)W_e(G_1) \]

\[- 3m_1M_1(G_2) - m_1 M_2(G_2) + (m_2 + n_2)(n_2 + 1)C(G_1) \]

\[+ 2m_1(n_2 + 1)(2n_2 + 3m_2 + 1) + n_2 + 2m_2 - 2) + 2m_1 m_2 (m_1(m_2 + 1) + m_2 - 6). \]

Proof.

\[Gut(G_1 \circ G_2) = A_1 + A_2 + A_3 + A_4, \]

where

\[A_1 = \sum_{(e_i, e_k) \in E(G_1)} \sum_{u_j \in V(G_2) \cup V(G_2)} d_{G_1 \circ G_2}(v_i) d_{G_1 \circ G_2}(v_j) d_{G_1 \circ G_2}(v_{ij}). \]

\[A_1 = \sum_{(e_i, e_k) \in E(G_1)} \sum_{u_j \in V(G_2) \cup V(G_2)} d_{G_1 \circ G_2}(u_j) d_{G_2 \circ G_2}(u_{ij}) d_{G_1 \circ G_2}(u_{ij}, u_{ij}). \]

\[A_1 = \sum_{(e_i, e_k) \in E(G_1)} \sum_{u_j \in V(G_2) \cup V(G_2)} d_{G_1 \circ G_2}(u_j) d_{G_1 \circ G_2}(u_{ij}) d_{G_1 \circ G_2}(u_{ij}, u_{ij}). \]

(3.6)
Using Lemmas 2.1 and 2.2, \(A_1, A_2, A_3 \) and \(A_4 \) can be computed as follows:

\[
A_1 = \sum_{v_i, v_j \in V(G_1)} d_{G_1 \otimes G_2}(v_i) \ d_{G_1 \otimes G_2}(v_j) \ d_{G_1 \otimes G_2}(v_i, v_j)
= (n_2 + 1)^2 \sum_{v_i, v_j \in V(G_1)} d_{G_1}(v_i) \ d_{G_1}(v_j) \ d_{G_1}(v_i, v_j)
= (n_2 + 1)^2 \text{Gut}(G_1).
\]

(3.7)

\[
A_2 = \sum_{e \in E(G_1)} \sum_{u \in V(G_1), u \not\in E(G_2)} d_{G_1 \otimes G_2}(u, v) \ d_{G_1 \otimes G_2}(u, k) \ d_{G_1 \otimes G_2}(u, k)
= \sum_{e \in E(G_1)} \sum_{u \in V(G_1), u \not\in E(G_2)} (d_{G_1}(u, v) + 2(d_{G_1}(u, v) + d_{G_1}(u, k)) + 4)
= \sum_{e \in E(G_1)} \left(4m_2^2 - M_1(G_2)\right) + 8(n_2 - 1)m_2 + 4n_2(n_2 - 1)
-M_2(G_2) - 2M_1(G_2) - 4m_2).
\]

(3.8)

\[
A_3 = \sum_{e_1, e_2 \in E(G_1)} \sum_{u \in V(G_1), u \not\in E(G_2)} d_{G_1 \otimes G_2}(u, v) \ d_{G_1 \otimes G_2}(u, v)
= \sum_{e_1, e_2 \in E(G_1)} \left(2\sum_{u \in V(G_1), u \not\in E(G_2)} (d_{G_1}(u, v) + 2(d_{G_1}(u, v) + d_{G_1}(u, k)) + 2\right)
= \sum_{e_1, e_2 \in E(G_1)} \left(4m_2^2 - M_1(G_2)\right) + 8(n_2 - 1)m_2 + 4n_2(n_2 - 1)
-M_2(G_2) - 2M_1(G_2) - 4m_2).
\]

(3.9)

Now, the result follows using (3.7), (3.8), (3.9) and (3.10) in (3.6).

Corollary 3.4 Let \(G_1 \) be a bipartite graph. Then

\[
\text{Gut}(G_1 \otimes G_2) = (n_2 + 1)(2m_2 + 3m_2 + 1)\text{Gut}(G_1) + (4m_2^2 + 8n_2m_2 + 4n_2^2)\text{W}(G_1)
- 3m_1M_1(G_2) - m_1M_2(G_2) + 2m_1n_2(m_1 + 3m_2 + 1) + n_2
+ 2m_2 - 2) + 2m_2, (m_2 + 1) + m_2 - 6).
\]
Lemma 3.5 [10] Let P_n and C_n denote the path and the cycle on n vertices, respectively. Then

$$\text{Gut}(P_n) = (n-1)(2n^2 - 4n + 3)/3,$$

$$\text{Gut}(C_n) = \begin{cases}
 n^3/2, & \text{if } n \text{ is even}, \\
 n(n^2 - 1)/2, & \text{if } n \text{ is odd}.
\end{cases}$$

Using Lemmas 2.5, 2.6 and 3.5 in Theorems 3.1 and 3.3, we obtain the following corollaries.

Corollary 3.6 We have

1. $\text{DD}(P_n \odot P_m) = (n-1)(2m^2n^2 + m^2n + 2mn^2 - 16m - n + 14)$.
2. $\text{DD}(C_{2n} \odot C_m) = (12m^2 + 16m + 4)n^3 + (20m^2 + 12m)n^2 + (8m^2 - 32m)n$.
3. $\text{DD}(C_{2n+1} \odot C_m) = 2(2n+1)(3m^2n^2 + 8m^2n + 4mn^2 + 5m^2 + 7mn + n^2 - 5m + n)$.
4. $\text{DD}(P_n \odot C_m) = (1/3)(n-1)(6m^2n^2 + 3m^2n + 8mn^2 + 2mn + 2n^2 - 48m - n)$.
5. $\text{DD}(C_{2n} \odot P_m) = (12m^2 + 12m)n^3 + (20m^2 + 4m - 4)n^2 + (8m^2 - 36m + 28)n$.
6. $\text{DD}(C_{2n+1} \odot P_m) = 2(2n+1)(3m^2n^2 + 8m^2n + 3mn^2 + 5m^2 + 4mn - 7m - n + 6)$.
7. $\text{DD}(K_n \odot P_m) = (1/2)n(n-1)(8m^2n^2 - 18m^2n - mn^2 + 14m^2 + 13mn - 30m - 2n + 16)$.
8. $\text{DD}(P_n \odot K_m) = (1/3)(n-1)(m+1)^2(mn^2 + mn + 2n^2 - 3m - n)$.
9. $\text{DD}(C_{2n} \odot K_m) = 2n((m^2 + 3m + 2)n^2 + (2m^2 + 3m)n - m)(m+1)$.
10. $\text{DD}(C_{2n+1} \odot K_m) = ((m^2 + 3m + 2)n^2 + (3m^2 + 6m + 2)n + m^2 + 2m)(m+1)(2n+1)$.
11. $\text{DD}(K_n \odot C_m) = (1/4)(n-1)(m+1)(m^3n - 5m^2n^2 + 2mn^3 + 14m^2n - 2mn^2 - 12m^2 + 6mn + 4n^2 - 8m - 4n)$.
12. $\text{DD}(P_n \odot K_m) = (1/3)(n-1)(4m^2n^2 + m^2n + 6mn^2 + 2n^2 - 12m - n)$.
13. $\text{DD}(C_{2n} \odot K_m) = 4n(2m^2n^2 + 3m^2n + 3mn^2 + m^2 + 2mn + n^2 - 2m)$.
14. $\text{DD}(C_{2n+1} \odot K_m) = 2(2n+1)(2m^2n^2 + 5m^2n + 3mn^2 + 3m^2 + 5mn + n^2 + n)$.
15. $\text{DD}(K_n \odot K_m) = (1/2)n(n-1)(5m^2n^2 - 11m^2n + 2mn^2 + 8m^2 + 2mn - 8m + 2n - 2)$.

Corollary 3.7 We have

1. $\text{Gut}(P_n \odot P_m) = (n-1)(6m^2n^2 + m^2 - 6mn - 30m + 39)$.
2. $\text{Gut}(C_{2n} \odot C_m) = 4n(9m^2n^2 + 12m^2n + 6mn^2 + 4m^2 + 4mn + n^2 - 16m)$.
3. $\text{Gut}(C_{2n+1} \odot C_m) = 2(2n+1)(9m^2n^2 + 21m^2n + 6mn^2 + 12m^2 + 10mn + n^2 - 12m + n)$.
4. \(\text{Gut}(C_{2n} \diamond P_m) = 4n(9m^2n^2 + 12m^2n + 4m^2 - 6mn - 20m + 20). \)

5. \(\text{Gut}(C_{2n+1} \diamond P_m) = 2(2n + 1)(9m^2n^2 + 21m^2n + 12m^2 - 6mn - 22m + 19). \)

6. \(\text{Gut}(P_n \diamond C_m) = (1/3)(n - 1)(18m^2n^2 + 12mn^2 + 3m^2 - 12mn + 2n^2 - 90m - 4n + 3). \)

7. \(\text{Gut}(K_n \diamond P_m) = (1/2)n(n-1)(21m^2n^2 - 46m^2n - 6mn^2 + 33m^2 + 16mn - 50m - n + 41). \)

8. \(\text{Gut}(P_n \diamond K_m) = (1/6)(n-1)(m+2)(m+1)^2(mn^2 + mn + 2n^2 - 3m - 4n + 3). \)

9. \(\text{Gut}(K_n \diamond C_m) = (1/2)n(21m^2n^3 - 67m^2n^2 + 10mn^3 + 79m^2n - 30mn^2 + n^3 - 33m^2 - 2mn + 22m + 3n - 1) - (3/2)n^3. \)

10. \(\text{Gut}(C_{2n} \diamond K_m) = n(m + 1)^2(m^2n^2 + 2m^2n + 4mn^2 + 4mn + 4n^2 - m). \)

11. \(\text{Gut}(C_{2n+1} \diamond K_m) = (n+1/2)(m+1)^2((n^2 + 3n + 1)m^2 + (4n^2 + 8n + 3)m + 4n^2 + 4n). \)

12. \(\text{Gut}(C_{2n} \diamond K_m) = 2(2n + 1)(4m^2n^2 + 8mn^2 + 4mn^2 + 4m^2 + 6mn + n^2 + n). \)

13. \(\text{Gut}(C_{2n+1} \diamond K_m) = 4n(4m^2n^2 + 4m^2n + 4mn^2 + m^2 + 2mn + n^2 - 2m). \)

14. \(\text{Gut}(P_n \diamond K_m) = (1/3)(n-1)(8m^2n^2 - 4m^2n + 8mn^2 + 3m^2 - 10mn + 2n^2 - 6m - 4n + 3). \)

15. \(\text{Gut}(K_n \diamond K_m) = (1/2)n(n-1)(8m^2n^2 - 17m^2n + 6mn^2 + 11m^2 - 12mn + n^2 + 2m - 2n + 1). \)

ACKNOWLEDGEMENT

The authors are thankful to the referees for their helpful comments and suggestions. The first author is thankful to the University Grants Commission, Government of India, for the financial support under the Grant F.510/2/SAP-DRS/2011.

REFERENCES

