A Novel Molecular Descriptor Derived from Weighted Line Graph

Document Type: Research Paper

Authors

1 Sambalpur University

2 School of Chemistry, Sambalpur University, Jyoti Vihar - 768019

10.22052/ijmc.2017.84168.1287

Abstract

The Bertz indices, derived by counting the number of connecting edges of line graphs of a molecule were used in deriving the QSPR models for the physicochemical properties of alkanes. The inability of these indices to identify the hetero centre in a chemical compound restricted their applications to hydrocarbons only. In the present work, a novel molecular descriptor has been derived from the weighted line graph of the molecular structure and applied in correlating the physicochemical properties of alkane isomers with these descriptors. A weight is tagged at the vertex of the line graph, which consequently modifies the weight of the edge. These descriptors were found to classify the alkane isomers and served well in deriving the QSPR models for various physicochemical properties. The mathematical calculations include the quantitative treatment on the role of substituents (alkyl) in governing the properties under study of the alkane isomers. Further, the use of weighted line graph in the enumeration of the topological index opens up a new vista on application to heteroatomic systems.

Keywords



1.    R. Todeschini and V, Consonni, Handbook of Molecular Dscriptors, Wiley VCH, Weinheim. 2000.
2.    R. K. Mishra and B. K. Mishra,A critical assessment of closed- and open-shell heterocyclobutadienes, Chem. Phy. Lett. 151 (1988) 44−46.
3.    F. Harary, Graph Theory, Addison Wesley Publishing Company, New York, 1969.
4.    S. H. Bertz in: Chemical Applications of Topology and Graph Theory, R. B. King (Ed.), Elsevier, Amsterdam, 1993, p. 206.
5.    S. H. Bertz, Branching in graphs and molecules, Discrete Appl. Math. 19 (1988) 65−83.
6.    I. Gutman, L. Popović, B. K. Mishra, M. Kuanar and E. Estrada, Application of line graphs in physical chemistry. Predicting the surface tensions of alkanes, J. Serb. Chem. Soc. 62 (1997) 1025−1030.
7.    M. Kuanar, S. K. Kuanar, B. K. Mishra and I. Gutman, Correlation of line graph parameters with physicochemical properties of octane isomers, Indian J. Chem. 38A (1999) 525−528.
8.    I. Gutman and Z. Tomovic, On the application of line graphs in quantitative structure-property studies, J. Serb. Chem. Soc. 65 (2000) 577−580.
9.    I. Gutman, Z. Tomvic, B. K. Mishra and M. Kuanar, On the use of iterated line graphs in quantitative structure-property studies, Indian J. Chem. 40A (2001) 4−11.
10.    Z. Tomovic and I. Gutman, Modeling boiling points of cycloalkanes by means of iterated line graph sequences, J. Chem. Inf. Comput. Sci. 41 (2001) 1041−1045.
11.    E. Estrada, Modelling the diamagnetic susceptibility of organic compounds by a sub-structural graph-theoretical approach, J. Chem. Soc. Faraday Trans. 94 (1998) 1407−1410.
12.    E. Estrada, A computer-based approach to describe the 13 C NMR chemical shifts of alkanes by the generalized spectral moments of iterated line graphs, Comput. Chem. 24 (2000) 193−201.
13.    I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci. 36 (1996) 541−543.
14.    E. Estrada, Application of a novel graph-theoretic folding degree index to the study of steroid–DB3 antibody binding affinity, Comp. Biol. Chem. 27 (2003) 305−313.
15.    N. Guevara, Fragmental graphs. A novel approach to generate a new family of descriptors. Applications to QSPR studies, J. Mol. Struct. (THEOCHEM) 493 (1999) 29−36.
16.    A. A. Dobrynin and L. S. Mel’nikov, Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers, Appl. Math. Lett. 18 (2005) 307−312.
17.    H. S. Ramane, K. P. Narayankar, S. S. Shirkol and A. B. Ganagi, Terminal Wiener index of line graphs, MATCH Commun. Math. Comput. Chem. 69 (2013) 775−782.
18.    A. A. Dobrynin and L. S. Mel’nikov,Wiener index of generalized stars and their quadratic line graphs, Discuss. Math. Graph Theory 26 (2006) 161−175.
19.    B. Wu, Wiener index of line graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 699−706.
20.    H. S. Ramane, I. Gutman and A. B. Ganagi, On diameter of line graphs, Iran. J. Math. Sci. Inf. 8 (2013) 105−109.
21.    A. A. Dobrynin and L. S. Mel'nikov, Trees and their quadratic line graphs having the same Wiener index, MATCH Commun. Math. Comput. Chem. 50 (2004) 145−164.
22.    A. A. Dobrynin and L. S. Mel'nikov, Some results on the Wiener index of iterated line graphs, Electronic Notes Discrete Math. 22 (2005) 469−475.
23.    M. Knor, P. Potočnik and R. Škrekovski, Wiener index of iterated line graphs of trees homeomorphic to H, Discrete Math. 313 (2013) 1104−1111.
24.    A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211−249.
25.    A. A. Dobrynin and L. S. Mel’nikov, Wiener index, line graphs and the cyclomatic number, MATCH Commun. Math. Comput. Chem. 53 (2005) 209−214.
26.    M. Knor, P. Potočnik and R. Škrekovski, The Wiener index in iterated line graphs, Discrete Appl. Math. 160 (2012) 2234−2245.
27.    M. Knor, P. Potočnik and R. Škrekovski, On a conjecture about Wiener index in iterated line graphs of trees, Discrete Math. 312 (2012) 1094−1105.
28.    P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, The edge-Wiener index of a graph, Discrete Math. 309 (2009) 3452−3457.
29.    S. M. Free and J. W. Wilson, A mathematical contribution to structure-activity studies, J. Med. Chem. 7 (1964) 395−399.
30.    D. R. Lide, CRC Handbook of Chemistry and Physics, 73rd Ed., CRC Press, Boca Raton, FL, 1992.
31.    D. E. Needham, I. C. Wei and P. G. Seybold, Molecular modeling of the physical properties of alkanes, J. Am. Chem. Soc. 110 (1988) 4186−4194.