The new high approximation of stiff systems of first order IVPs arising from chemical reactions by k-step L-stable hybrid methods

Document Type: Research Paper

Authors

Department of Mathematics, Faculty of Sciences, University of Maragheh, Maragheh, Iran

10.22052/ijmc.2018.111016.1335

Abstract

In this paper, we present a new class of hybrid methods for the numerical solution of first order ordinary differential equations (ODEs). The accuracy and stability properties of the new methods are investigated. In the final section, we apply new hybrid methods to solve two stiff chemical problems such as Roberston problem.

Keywords


1     R. C. Aiken, Stiff Computation, Oxford University Press, Oxford, 1985.

2     J. R. Cash, On the integration of stiff systems of ODEs using extended backward differentiation formula, Numer. Math. 34 (2) (1980) 235−246.

3     L. Edsberg, Integration Package for Chemical Kinetics, Plenum Press, New York, 1974, pp. 81−94.

4     W. H. Enright, Second derivative multistep methods for stiff ordinary differential equation, SIAM J. Numer. Anal. 11 (1974) 321−331.

5     C. W. Gear, Numerical Initial Value Problem in Ordinary Differential Equations, Prentice Hall, Prentice Hall, PTR Upper Saddle River, NJ, 1971.

6      E. Hairer and G. Wanner, Solving Ordinary Differential Equation II: Stiff and Differential-Algebraic Problem, Springer, Berlin, 1996.

7      P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley & Sons, New York/London, 1962.

8     A. Hindmarsh, LSODE and LSODI, two new initial value ordinary differential equation solvers, Acm-Signum Newsletter 15 (1980) 10−11.

9     G. Hojjati, M. Y. Rahimi Ardabili and S. M. Hosseini, New second derivative multistep methods for stiff system, Appl. Math. Modelling 30 (2006) 466−467.

10   S. J. Y. Huang, Implementation of General Linear Methods for Stiff Ordinary Differential Equations, Ph.D. Thesis, Auckland University, 2005.

11   G. Ismail and I. Ibrahim, New efficient second derivative multistep methods for stiff systems, Appl. Math. Modelling23 (1999) 279−288.

12   J. D. Lambert, Computational Methods in Ordinary Differential Equation, John Wiley & Sons, London, 1972.

13   F. Mazzia and C. Magherini, Test Set for Initial Value Problem Solvers, release 2.4, Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008. available at http://www.dm.uniba.it/testset.

14   M. Mehdizadeh Khalsaraei and M. Molayi, A new class of L-stable hybrid one-step methodfor the numerical solution of ordinary differential equation, J. Comp. Sci. Appl. Math. 1 (2) (2015) 39−44.

15   M. Mehdizadeh Khalsaraei, M.Y. Rahimi Ardabili and G. Hojjati, The new class of super-implicit second derivative multistep methods for stiff systems, J. Appl. Funct. Anal. 4 (3) (2009) 492−500.

16   M. Mehdizadeh Khalsaraei, N. Nasehi Oskuyi and G. Hojjati, A class of second derivative multistep methods for stiff systems, Acta Univ. Apulensis 30 (2012) 171−188.

17   M. Mehdizadeh Khalsaraei and M. Mulayi, The new class of A-stable hybrid multistep methods for numerical solution of stiff initial value problem, Math. Theory Model. 5 (2015) 97−103.

18   H. H. Robertson, The solution of a set of reaction rate equations, In Numerical Analysis an Introduction (Edited by J. Walsh), 178−182, Thompson, Washington D.C., 1967.

19   L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.

20   A. Shokri and A. A. Shokri, The new class of implicit L-stable hybrid Obrechkoff method for the numerical solution of first order initial value problems, Comput. Phys. Commun. 184 (3) (2013) 529−531.

21   T. E. Simos, Multiderivative methods for the numerical solution of the Schrödinger equation, MATCH Commun. Math. Comput. Chem. 50 (2004) 7−26.

22   T. E. Simos and P. S. Williams, A new Runge-Kutta-Nyström method with Phase-Lag of order infinity for the numerical solution of the Schrödinger equation, MATCH Commun. Math. Comput. Chem. 45 (2002) 123−137.

23  T. V. Triantafyllidis, Z. A. Anastassi and T. E. Simos, Two optimized Runge-Kutta methods for the solution of the Schrödinger equation, MATCH Commun. Math. Comput. Chem. 60 (3) (2008) 753−771.