Predeiction of ∆H0f(gas) ,∆H0f(Liq) of Amines Derivatives Using chemometrics (A Quantitative Structure-Property Relationship Study)

Document Type: Research Paper


Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran



In this study, multiple linear regression method that is based on property-structure model has been used to predict the standard enthalpies of formation for the gas and liquid phases of the 33 different types of amines. It was indicated that among studied topological and geometric descriptors to predict the ∆H˚f(liquid), descriptors as PSA, H, MaxZL and V have more importance than the other descriptors. Also, the results of experiments on studied amines were compared with the results of multiple linear regression calculations and it was observed that such descriptors as MaxZL MaxPA, DE, J and WW are the best descriptors for predicting the values of ∆H˚f(gas) of this class of amines.


1.    M. A. Sharaf, D. L. Illman and B. R. Kowalski, Chemometrics, Chemical Analysis Series, Wiley, New York, 82, 1986.
2.    D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte and L. Kaufmann, Chemometrics–a Textbook, Elsevier, Amsterdam, 1988.
3.    R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Methods and Principles in Medicinal Chemistry, Wiley-Vch Verlag Gmbh, 2008.
4.    H. Martens and T. Naes, Multivariate Calibration, New York, Wiley, 1989.
5.    W. G. Hunter, Statistics and Chemistry and the Linear Calibration Problem, In B. R. Kowalski, Chemometrics: Mathematics and Statistics in Chemistry, Boston: Riedel, 1984.
6.    J. F. Mac Gregor and T. Kourti, Statistical control of multivariate processes, Control Engineering Practice 3 (3) (1995) 403–414.
7.    S. Ahmadi and E. Habibpour, Application of GA-MLR for QSAR modeling of the arylthioindole class of tubulin polymerization inhibitors as anticancer agents, Anti-Cancer Agents Med. Chem. 17 (4) (2017) 552− 565.
8.    M. B. Smith and J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley-Interscience, New York, 2007.
9.    G. W. Snedecor and G. W. Cochran, Statistical Methods, Oxford and IBH, New Delhi, 2010.
10.    I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
11.    M. Randić and S. C. Basak, Multiple regression analysis with optimal molecular descriptors, SAR QSAR Environ. 11 (1) (2000) 1−23.
12.    J. Sangster, Octanol-water partition coefficients of simple organic compounds, J. Phys. Chem. Ref. Data 18 (3) (1989).
13.    E. Mohammadinasab, Determination of critical properties of alkanes derivatives using multiple linear regression, Iranian J. Math. Chem. 8 (2) (2017) 199 −220.
14.    M. Goodarzi and M. Mohammadinasab, Theoretical investigation of relationship between quantum chemical descriptors, Topological indices, energy and electric moments of zig-zag polyhex carbon nanotubes TUHC6 [2p,q] with various circumference [2p] and fixed lengths, Fullerenes Nanotubes Carbon Nanostructures 21 (2013) 102−112.
15.    H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17−20.
16.     D. J. Klein, Z. Mihalic, D. Plavsic and N. Trinajstić, Molecular topological index: a relation with the Wiener index, J. Chem. Inf. Computer. Sci, 32 (4) (1992) 304−305.
17.    G. Cash, S. Klavžar and M. Petkovšek, Three methods for calculation of the hyper-Wiener index of molecular graphs, J. Chem. Inf. Comput. Sci. 42 (2002) 571−576.
18.    H. Wang, On the extremal Wiener-polarity index of Hückel graphs, Comput. Math. Methods Med. 2016, Article ID 3873597, 6 pages.
19.    J. Baskar Babujee, Topological indices and new graph structures, Appl. Math. Sci. 6 (108) (2012) 5383 – 5401.
20.    M. Randic, Charactrization of molecular branching, J. Am. Chem. 97 (23) (1975) 6609−6615.
21.    A. T. Balaban and T. S. Balaban, New vertex invariant and topological indices of chemical graphs based on information on distance, Math. Chem. 8 (1991) 383−397.  
22.    A. T. Balaban, Topological index based on topological distances in molecular graph, Pure Appl. Chem. 55 (1983) 199−206.
23.     K. Xu and K. Ch. Das, On Harary index of graphs, Discrete Appl. Math. 159 (2011) 1631−1640.
24.    P. V. Khadikar, N. V.  Deshpande, P. P. Kale, A. Dobrynin, I. Gutman and G. Domotor, The Szeged index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35 (1995) 547−550.
25.    Web search engine developed by ChemAxon, software available at http://
26.    J. Devillers and A. T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science, Netherlands, 1999.
27.    I. Gutman and B. Furtula (eds), Novel Molecular Structure Descriptors-Theory and Applications, University of Kragujevac and Faculty of Science, Kragujevac, 2010.