Aromaticity of fullerenes, the way to their functionalization (Review)

Document Type: Review Article


1 Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, Bydgoszcz 85-096, Poland

2 University of Medicine and Pharmacy, Romania


Aromaticity is used to describe the durability and reactivity of structures containing delocalized  electrons.In this review article, the aromaticity of fullerenes patched with flowers of 6-and 8-membered ringsis discussed, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria. The aromatic character of these nanostructures allows for functionalization and finally for increasing their solubility in polar solvents. The overall conclusion is that several of the yet hypothetical molecular nanostructures herein described are serious candidates for new medicinal products, as a proposal for personalized medicine.


Main Subjects

1. ISI Web of Science, 2010
2. J. A. N. F. Gomes and R. B. Mallion, Aromaticity and ring currents, Chem.
Rev. 101 (5) (2001) 1349−1383.
3. M. K. Cyrański, T. M. Krygowski, A. R. Katritzky and P. v. R. Schleyer,
To what extent can aromaticity be defined uniquely?, J. Org. Chem. 67(4)
(2002) 1333−1338.
4. Z. Chen, C. S. Wannere, C. Crominboeuf, R. Puchta, R. v. P. Schleyer,
Nucleus-independent chemical shifts (NICS) as an aromaticity criterion,
Chem. Rev. 105(10) (2005) 3842−3888.
5. M. K. Cyrański, Energetic aspects of cyclic pi-electron delocalization:
Evaluation of the methods of estimating aromatic stabilization, Chem. Rev.
105 (2005) 3773−3811.
6. T. Heine, C. Corminboeuf and G. Seifert, The magnetic shielding function
of molecules and pi-electron delocalization, Chem. Rev. 105(10) (2005)
7. T. M. Krygowski, M. K. Cyrański, G. Häfelinger and A. R. Katritzky,
Aromaticity: a theoretical concept of immense practical importance,
Tetrahedron 13(56) (2000) 1783−1793.
8. A. R. Kartizky, B. Barczynski, G. Musumarra and D. Pisano, Aromaticity
as a quantitative concept. 1. A statistical demonstration of the orthogonality
of classical and magnetic aromaticity in five-and six-membered
heterocycles, J. Am. Chem. Soc. 111(1) (1989) 7−15.
9. K. Jug and A. Koester, Aromaticity as a multi-dimensional phenomenon, J.
Phys. Org. Chem. 4(3) (1991) 163−169.
10. M. K. Cyrański and T. M. Krygowski, Structural studies of disubstituted
benzene derivatives 2 factor and regression-analyses of aromaticity of the

ring in para- disubstituted benzene-derivatives, Pol. J. Chem. 69 (7) (1995)
11. T. M. Krygowski and M. Cyrański, Separation of the energetic and
geometric contributions to the aromaticity. Part IV. A general model for the
π-electron systems, Tetrahedron 52(30) (1996) 10255−10264.
12. J. Kruszewski and T. M. Krygowski, Definition of aromaticity basing on
the harmonic oscillator model, Tetrahedron Lett. 13(36) (1972) 3839−3842.
13. T. M. Krygowski, Crystallographic studies of inter- and intramolecular
interactions reflected in aromatic character of. pi-electron systems, J.
Chem. Inf. Comput. Sci. 33(1) (1993) 70−78.
14. L. Pauling and W. Whelang, The nature of the chemical bond. V. The
quantum mechanical calculation of the resonance energy of benzene and
naphthalene and the hydrocarbon free radicals, J. Chem. Phys. 1 (1933)
15. V. I. Minkin, M. N. Glukhovtsev and B. Y. Simkin, Aromaticity and
Antiaromaticity: Electronic and Structural Aspects, Wiley−Interscience,
16. P. v. R. Schleyer and H. Jiao, What is aromaticity?, Pure Appl. Chem.
68(2) (1996) 209−218.
17. M. K. Cyrański, T. M. Krygowski, A. R. Katritzky and P. v. R. Schleyer, J.
Org. Chem. 67(4) (2002) 1333−1338.
18. M. K. Cyrański, P. v. R. Schleyer, T. M. Krygowski, H. Jao and G.
Hohlneicher, Facts and artifacts about aromatic stability estimation,
Tetrahedron 59(10) (2003) 1657−1665.
19. L. Pauling and G. W. Wheland, The nature of the chemical bond. V. The
quantum-mechanical calculation of the resonance energy of benzene and
naphthalene and the hydrocarbon free radicals, J. Chem. Phys. 1(6) (1933)
20. R. Daudel, R. Lefebre and C. Moser, Quantum Chemistry. Methods and
Applications, Interscience, New York, 1959.
21. L. Pauling, The Nature of the Chemical Bond and the Structure of
Molecules and Crystals: An Introduction to Modern Structural Chemistry,
Cornell University Press, Ithaca, New York, 1960.
22. C. A. Coulson, Valence, 2nd ed., Oxford University Press, New York,
23. L. Pauling and J. Sherman, The nature of the chemical bond. VII. The
calculation of resonance energy in conjugated systems, J. Chem. Phys. 1
(10) (1933): 679−686.

24. G. B. Kistiakowsky, J. R. Ruhoff, H. A. Smith and W. E. Vaughan, Heats
of organic reactions. IV. Hydrogenation of some dienes and of benzene, J.
Am. Chem. Soc. 58(1) (1936) 146−153.
25. A. Kekulé, Ueber einige Condensationsproducte des Aldehyds, Liebigs
Ann. Chem. 168(1872) 77−124.
26. P. v. R. Schleyer, M. Manoharan, H. Jiao and F. Stahl, Acenes: Is There a
Relationship between Aromatic Stabilization and Reactivity?, Org. Lett. 3
(2001) 3643−3646.
27. J. Kruszewski and T. M. Krygowski, A quantum-chemical approach to the
chemical definition of aromaticity, Tetrahedron Lett (1970) 319−324.
28. P. v. R. Schleyer, P. K. Freeman, H. Jiao and B. Goldfuss, Aromacity and
antiaromacity in five-membered C4H4X rings systems: “Classical’’ and
“Magentic’’ concepts may not be “Orthogonal’’, Angew. Chem., Int. Ed.
Engl. 34 (1995) 337−340.
29. A. Muñoz-Castro, Axis-dependent magnetic behavior of C60 and C60
consequences of spherical aromatic character, Chem. Commun. 51 (2015)
30. G. Subramanian, P. v. R., Schleyer and H. Jiao, Haben die stabilsten
anellierten Heterobicyclen auch den stärksten aromatischen Charakter?,
Angew. Chem. 108 (22) (1996) 2824−2827.
31. P. Lazzeretti, Ring currents, Prog. Nucl. Magn. Reson. Spectrosc. 36
(2000) 1−88.
32. T. M. Krygowski and J. Kruszewski, Ilościowe kryteria aromatyczności
Wydawnic two Politechniki Wrocławskiej, 1978.
33. H. J. Dauben, J. D. Wilson and J. L. Laity, Diamagnetic susceptibility
exaltation as a criterion of aromaticity, J. Am. Chem. Soc. 90 (3) (1968)
34. H. J. Dauben, J. D. Wilson and J. L. Laity, Diamagnetic susceptibility
exaltation in hydrocarbons, J. Am. Chem. Soc. 91 (8) (1969) 1991−1998.
35. H. J. Dauben, J. D. Wilson and J. L. Laity, In: J. P. Snyder (ed.),
Nonbenzoid Aromatics, vol 2, Academic Press: New York, pp. 167−206,
Chapter 2, 1971.
36. R. C. Benson and W. H. Flygare, Molecular Zeeman effect of
cyclopentadiene and isoprene and comparison of the magnetic
susceptibility anisotropies, J. Am. Chem. Soc. 92 (26) (1970) 7523−7529.
37. W. H. Flygare and R. C. Benson, The molecular Zeeman effect in
diamagnetic molecules and the determination of molecular magnetic

moments (g values), magnetic susceptibilities, and molecular quadrupole
moments, Mol. Phys. 20 (2) (1971) 225−250.
38. M. K. Cyrański and T. M. Krygowski, Separation of the energetic and
geometric contribution to aromaticity. Part X. The case of benzene rings in
fused polycyclic benzenoid hydrocarbons, Tetrahedron 54 (49) (1998)
39. G. Subramanian, P. v. R. Schleyer and H. Jiao, Are the most stable fused
heterobicycles the most aromatic?, Angew. Chem. Int. Ed. Engl. 35(22)
(1996) 2638−2641.
40. H. Jiao, P. v. R Schleyer, Aromaticity of pericyclic reaction transition
structures: magnetic evidence. J. Phys. Org. Chem. 11(8-9) (1998)
41. V. Gogonea, P. v. R Schleyer and P. R. Schreiner, Consequences of triplet
aromaticity in 4nπ-electron annulenes: Calculation of magnetic Shieldings
for open-shell species, Angew. Chem. Int. Ed. 37 (13−14) (1998)
42. S. M. Ferrer and J. M. Molina, Theoretical calculations on C30H12 bowlshaped
hydrocarbons: NMR shielding constants, stability, and aromaticity,
J. Comput. Chem. 20 (13) (1999) 1412−1421.
43. T. M. Krygowski and M. K. Cyrański, Two sources of the decrease of
aromaticity: Bond length alternation and bond elongation. Part II. An
analysis based on geometry of the singlet and triplet states of 4nπ
annulenes: C4H4, C5H5
+, C6H6
2+, C7H7
-, C8H8, C9H9
+, Tetrahedron 55 (36)
(1999) 11143−11148.
44. P. v. R. Schleyer, B. Kiran, D. V. Simon and T. S. Sorensen, Does Cr(CO)3
complexation reduce the aromaticity of benzene?, J. Am. Chem. Soc. 122
(3) (2000) 510−513.
45. A. A. Fokin, B. Kiran, M. Bremer, X. Yang, H. Jiao, P. v. R. Schleyer and
P. R. Schreiner, Which electron count rules are needed for four center three
dimensional aromaticity?, Chem. Eur. J. 6 (9) (2000) 1615−1628.
46. R. B. King, Three-dimensional aromaticity in polyhedral boranes and
related molecules, Chem. Rev. 101 (5) (2001) 1119−1152.
47. F. Stahl, P. v. R. Schleyer, H. Jiao, H. F. Schaefer, K. H. Chen and N. L.
Allinger, Resurrection of neutral tris-homoaromaticity, J. Org. Chem. 67
(2002) 6599−6611.
48. C. Castro, C. M. Isborn, W. L. Karney, M. Mauksch and P. v. R. Schleyer,
Aromaticity with a twist: Möbius [4 n] annulenes, Org. Lett. 4 (2002)

49. Z. Chen, A. Hirsch, S. Nagase, W. Thiel and P. v. R. Schleyer, Spherical
sila- and germa-homoaromaticity, J. Am. Chem. Soc. 125 (2003)
50. Z. Chen, H. Jiao, D. Moran, A. Hirsch, W. Thiel and P. v. R. Schleyer,
Aromatic stabilization in heterofullerenes C48X12 (X= N, P, B, Si), J. Phys.
Org. Chem. 16 (2003) 726−730.
51. Z. Chen, C. S. Wannere, C. Crominboeuf, R. Puchta and R. v. P. Schleyer,
Nucleus-independent chemical shifts (NICS) as an aromaticity criterion,
Chem. Rev. 105 (2005) 3842−3888.
52. B. A. Hess Jr and L. J. Schaad, Hueckel molecular orbital. pi. resonance
energies. New approach, J. Am. Chem. Soc. 93 (2) (1971) 305−310.
53. B. M. Smith and J. March, Advanced Organic Chemistry, Wiley, New
York, 2001.
54. S. T. Howard and T. M. Krygowski, Benzenoid hydrocarbon aromaticity in
terms of charge density descriptors, Can. J. Chem. 75 (1997) 1174−1181.
55. B. Szefler and M. V. Diudea, Quantum-mechanical calculations on
molecular substructures involved in nanosystems, molecules, 19 (2014)
56. M. Randić, Algebraic Kekulé formulas for benzenoid hydrocarbons, J.
Chem. Inf. Comput. Sci. 44 (2004) 365–372.
57. A. Ciesielski, M. K. Cyrański, T. M. Krygowski, P. W. Fowler and M.
Lillington, Super-delocalized valence isomer of coronene, J. Org. Chem.
71 (2006) 6840–6845.
58. A. Ciesielski, T. M. Krygowski, M. K. Cyrański and A. T. Balaban,
Defining rules of aromaticity: A unified approach to the Hückel, Clar and
Randić concepts, Phys. Chem. Chem. Phys 13 (2011) 3737–3747.
59. A. Löffler, N. Bajales, M. Cudaj, P. Weis, S. Lebedkin, A. Bihlmeier, D. P.
Tew, W. Klopper, A. Böttcher and M. M. Kappes, Non-IPR C60 solids, J.
Chem. Phys. 130 (2009) 164705.
60. R. Pop, M. Medeleanu, M. V. Diudea, B. Szefler and J. Cioslowski,
Fullerenes patched by flowers, Cent. Eur. J. Chem. 11 (2013) 527–534.
61. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X.
Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.
Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg,
D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.
Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R.
Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
62. M. Randić, Aromaticity of polycyclic conjugated hydrocarbons, Chem.
Rev. 103 (2003) 3449–3605.
63. M. V. Diudea, Nanostructures-Novel Architecture, M. V. Diudea (Ed.),
Nova Publisher, New York, 2005, pp. 203–242.
64. M. V. Diudea and C. L. Nagy, Periodic Nanostructures, Springer,
Dordrecht, The Netherlands, 2007.
65. M. O’Keeffe, G. B. Adams and O. F. Sankey, Predicted new low energy
forms of carbon, Phys. Rev. Lett 68 (1992) 2325–2328.
66. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, USA, 1969.
67. M. V. Diudea, Nanomolecules and Nanostructures-Polynomials and
Indices, MCM Series 10, University of Kragujevac Press, Kragujevac,
68. H. A. Schwarz, Über Minimalflächen (In German), Monatsber, Berlin
Akad., Germany, 1865.
69. H. A. Schwarz, Gesammelte Matematische Abhandlungen (In German),
Springer, Berlin, 1980.
70. M. O’Keeffe, G. B. Adams and O. F. Sankey, Predicted new low energy
forms of carbon, Phys. Rev. Lett. 68 (1992) 2325–2328.
71. W. M. Meier and D. H. Olson, Atlas of Zeolite Structure Types, 3rd ed.,
Butterworth-Heineman, London, UK, 1992.
72. E. Barborini, P. Piseri, P. Milani, G. Benedek and C. Ducati, Robertson
Negatively curved spongy carbon, J. Appl. Phys. Lett. 81 (2002) 3359–
73. G. Benedek, H. Vahedi-Tafreshi, E. Barborini, P. Piseri, P. Milani, C.
Ducati and J. Robertson, The structure of negatively curved spongy carbon,
Diam. Relat. Mater. 12 (2003) 768–773.
74. B. Szefler and M. V. Diudea, Polybenzene revisited, Acta Chim. Slov 59
(2012) 795–802.
75. M. V. Diudea and M. Petitjean, Symmetry in multi tori, Symmetry Cult.
Sci. 19 (2008) 285–305.
76. B. Szefler and M. V. Diudea, Strain in Platonic fullerenes. Struct. Chem 25
(2014) 319–325.

77. M. V. Diudea and B. Szefler, Nanotube junctions and the genus of multitori,
Phys. Chem. Chem. Phys. 14 (2012) 8111–8115.
78. B. Szefler and M. V. Diudea, Modeling tetrapodal nanotube junctions,
Comput. Methods Sci. Technol. 18 (2) (2012) 111−115.