Neonicotinoids activity against Cowpea aphids by computational estimation

Document Type: Research Paper

Authors

“Coriolan Dragulescu“ Institute of Chemistry, Romanian Academy, Bul. Mihai Viteazu 24, 300223 Timisoara, Romania

Abstract

In this study, the insecticidal activity against Cowpea aphids (Aphis craccivora) of a series of 23 phenylazo, pyrrole-, dihydropyrrole-fused and chain-opening nitromethyleneneonicotinoids was evaluated by using the multiple linear regression (MLR) and pharmacophore modelling. Conformer insecticide ensembles were modeled using the MMFF94s force field. Minimum energy conformers were employed to calculate structural parameters, which were related to the experimental pLC50 values. Several statistical criteria of goodness of fit and predictivity were checked to validate the models. Robust and predictable MLR models were obtained. Further, the Phase module from Schrodinger suite was engaged in the generation of the ligand-based pharmacophore models. The atom-based 3D-QSAR module from the aforementioned software was used for the validation of a best four-point pharmacophore model. The obtained significant statistical parameters attested thepharmacophore model validity. The MLR and pharmacophore models are useful for the prediction of new insecticides with activity against Cowpea aphids.

Keywords

Main Subjects


1. P. Jeschke, R. Nauen, M. Schindler and A. Elbert, Overview of the status
and global strategy for neonicotinoids, J. Agric. Food Chem. 59 (7) (2011)
2897−2908.
2. J. E. Casida and K. A. Durkin, Neuroactive insecticides: targets, selectivity,
resistance, and secondary effects, Annu. Rev. Entomol. 58 (2013) 99−117.
3. J. E. Casida, Neonicotinoids and other insect nicotinic receptor competitive
modulators: progress and prospects, Annu. Rev. Entomol. 63 (2018)
125−144.
4. A. Whittaker, Datasheet − Aphis craccivora, In: Invasive species
compendium − CABI, Wallingford, UK, (2018)
https://www.cabi.org/isc/datasheet/6192. Accessed 25/02/2018.
5. S. I. Bishara, E. Z. Farm, A. A. Attia and M. A. El-Hariry, Yield losses of
faba bean due to aphid attack, Fabis News Letter 1 (1984) 16−18.
6. M. Akamatsu, Importance of physicochemical properties for the design of
new pesticides, J. Agric. Food Chem. 59 (2011) 2909−2917.
7. S. Kagabu, Discovery of imidacloprid and further developments from
strategic molecular designs, J. Agric. Food Chem. 59 (2010) 2887−2896.
8. P. Maienfisch, H. Huerlimann, A. Rindlisbacher, L. Gsell, H. Dettwiler, J.
Haettenschwiler, E. Sieger and M. Walti, The discovery of thiamethoxam:
a second-generation neonicotinoid, Pest. Manag. Sci. 57(2001) 165−176.
9. H. Uneme, Chemistry of clothianidin and related compounds, J. Agric.
Food Chem. 59 (2010) 2932−2937.

10. T. Wakita, K. Kinoshita, E. Yamada, N. Yasui, N. Kawahara, A. Naoi, M.
Nakaya, K. Ebihara, H. Matsuno and K. Kodaka, The discovery of
dinotefuran: a novel neonicotinoid, Pest. Manag. Sci. 59 (2003)
1016−1022.
11. M. R. Loso, Z. Benko, A. Buysse, T. C. Johnson, B. M. Nugent, R. B.
Rogers, T. C. Sparks, N. X. Wang, G. B. Watson and Y. Zhu, SAR studies
directed toward the pyridine moiety of the sap-feeding insecticide
sulfoxaflor (Isoclast™ active), Bioorg. Med. Chem. 24 (2016) 378−382.
12. J. E. Casida, Golden age of RyR and GABA-R diamide and isoxazoline
insecticides: Common genesis, serendipity, surprises, selectivity, and
safety, Chem. Res. Toxicol. 28 (2015) 560−566.
13. P. Schäfer, G. Hamprecht, M. Puhl, K.-O. Westphalen and C. Zagar,
Synthesis and herbicidal activity of phenylpyridines − A new lead, Chimia
57 (2003) 715−719.
14. N. Basant and S. Gupta, QSAR modeling for predicting mutagenic toxicity
of diverse chemicals for regulatory purposes, Environ. Sci. Pollut. Res. 24
(16) (2017) 14430−14444.
15. M. Hamadache, O. Benkortbi, S. Hanini and A. Amrane, QSAR modeling
in ecotoxicological risk assessment: application to the prediction of acute
contact toxicity of pesticides on bees (Apis mellifera L), Environ. Sci.
Pollut. Res. 25 (1) (2018) 896−907.
16. M. Hamadache, O. Benkortbi, S. Hanini, A. Amrane, L. Khaouane and C.
S. Moussa, A quantitative structure activity relationship for acute oral
toxicity of pesticides on rats: validation, domain of application and
prediction, J. Hazard. Mater. 303 (2016) 28−40.
17. Y. Xie, W. Peng, F. Ding, S. J. Liu, H. J. Ma and C. L. Liu, Quantitative
structure-activity relationship (QSAR) directed the discovery of 3-(pyridin-
2-yl)benzenesulfonamidederivatives as novel herbicidal agents, Pest.
Manag. Sci. 74 (1) (2018) 189−199.
18. S. Kagabu, K. Nishimura, Y. Naruse and I. Ohno, Insecticidal and
neuroblocking potencies of variants of the thiazolidine moiety of
thiacloprid and quantitative relationship study for the key neonicotinoid
pharmacophore, J. Pestic. Sci. 33 (1) (2008) 58−66.
19. Z. Tian, X. Shao, Z. Li, X. Qian and Q. Huang, Synthesis, insecticidal
activity, and QSAR of novel nitromethylene neonicotinoids with
tetrahydropyridine fixed cis configuration and exo-ring ether modification,
J. Agric. Food Chem. 55 (6) (2007) 2288−2292.

20. M. J. Wang, X. B. Zhao, D. Wu, Y. Q. Liu, Y. Zhang, X. Nan, H. Liu, H.
T. Yu, G. F. Hu and L. T. Yan, Design, synthesis, crystal structure,
insecticidal activity, molecular docking, and QSAR studies of novel N3-
substituted imidacloprid derivatives, J. Agric. Food Chem. 62 (24) (2014)
5429−5442.
21. S. Xia, J. Cheng, Y. Feng, X. Shao, H. Luo, Z. Xu, X. Xu and Z. Li,
Computational investigations about the effects of hetero-molecular
aggregation on bioactivities: a case of neonicotinoids and water, Chin. J.
Chem. 32 (2014) 324−334.
22. R. Xu, M. Luo, R. Xia, X. Meng, X. Xu, Z. Xu, J. Cheng, X. Shao, H. Li
and Z. Li, Seven-membered azabridged neonicotinoids: synthesis, crystal
structure, insecticidal assay, and molecular docking studies, J. Agric. Food
Chem. 62 (46) (2014) 11070−11009.
23. A. Bora, T. Suzuki and S. Funar-Timofei, Neonicotinoid insecticide design:
molecular docking, multiple chemometric approaches and toxicity
relationship with Cowpea aphids, Environ. Sci. Pollut. Res. (2019), DOI:
10.1007/s11356-019-04662-9.
24. S. Lu, X. Shao, Z. Li, Z. Xu, S. Zhao, Y. Wu and X. Xu, Design, synthesis,
and particular biological behaviors of chain-opening nitromethylene
neonicotinoids with cis configuration, J. Agric. Food Chem. 60 (2012)
322−330.
25. Z. Ye, L. Shi, X. Shao, X. Xu, Z. Xu and Z. Li, Pyrrole- and
dihydropyrrole-fused neonicotinoids: Design, synthesis, and insecticidal
evaluation, J. Agric. Food Chem. 61 (2013) 312−319.
26. P. C. D. Hawkins and A. Nicholls, Conformer generation with OMEGA:
Learning from the data set and the analysis of failures, J. Chem. Inf. Model.
52 (2012) 2919−2936.
27. P. C. D. Hawkins, G. A. Skillman, G. L. Warren, B. A. Ellingson and M. T.
Stahl, Conformer generation with OMEGA: Algorithm and validation
using high quality structures from the protein databank and Cambridge
structural database, J. Chem. Inf. Model. 50 (2010) 572–584.
28. S. Wold and W. J. Dunn III, Multivariate quantitative structure-activity
relationships (QSAR): conditions for their applicability, J. Chem. Inf.
Comput. Sci. 23 (1983) 6−13.
29. P. Gramatica, N. Chirico, E. Papa, S. Cassani and S. Kovarich, QSARINS:
A new software for the development, analysis, and validation of QSAR
MLR models, J. Comput. Chem. 34 (2013) 2121 – 2132.

30. P. Gramatica, On the development and validation of QSAR models,
computational toxicology. Methods in molecular biology (Methods and
Protocols), Vol. 930, Humana Press, Totowa, 2013, pp. 499−526.
31. U. Depczynski, V. J. Frost and K. Molt, Genetic algorithms applied to the
selection of factors in principal component regression, Anal. Chim. Acta
420 (2000) 217−227.
32. R. Todeschini, V. Consonni, A. Mauri and M. Pavan, Detecting “bad”
regression models: multicriteria fitness functions in regression analysis.
Anal. Chim. Acta 515 (2004) 199−208.
33. D. M. Hawkins, S. C. Basak and D. Mills, Assessing model fit by crossvalidation,
J. Chem. Inf. Comput. Sci. 43 (2003) 579−586.
34. S. L. Dixon, A. M. Smondyrev, E. H. Knoll, S. N. Rao, D. E. Shaw and R.
A. Friesner, PHASE: a new engine for pharmacophore perception, 3D
QSAR model development, and 3D database screening: 1. Methodology
and preliminary results, J. Comput. Aided. Mol. Des. 20 (2006) 647–671.
35. Small-Molecule Drug Discovery Suite 2014–1: Phase (2014) version 3.8,
Schrodinger, LLC, New York, NY, 2014 Phase, version 3.1 Schrödinger,
LLC, New York. http://www.schrödinger.com.
36. R. Todeschini, V. Consonni and A. Maiocchi, The K correlation index:
theory development and its applications in chemometrics, Chemometr.
Intell. Lab. 46 (1999) 13−29.
37. M. Goodarzi, S. Deshpande, V. Murugesan, S. B. Katti and Y. S.
Prabhakar, Is feature selection essential for ANN modeling, QSAR
combinatorial science 28 (2009) 1487−1499.
38. N. Chirico and P. Gramatica, External predictivity of QSAR models: how
to evaluate it? comparison of different validation criteria and proposal of
using the concordance correlation coefficient, J. Chem. Inf. Model. 51
(2011) 2320–2335.
39. L. M. Shi, H. Fang, W. Tong, J. Wu, R. Perkins, R. M. Blair, W. S.
Branham, S. L. Dial, C. L. Moland and D. M. Sheehan, QSAR models
using a large diverse set of estrogens, J. Chem. Inf. Model. 41 (2001) 186–
195.
40. G. Schüürmann, R. U. Ebert, J. Chen, B. Wang and R. Kuhne, External
validation and prediction employing the predictive squared correlation
coefficient test set activity mean vs training set activity mean. J. Chem. Inf.
Model. 48 (2008) 2140–2145.

41. V. Consonni, D. Ballabio and R. Todeschini, Comments on the definition
of the Q2 parameter for QSAR validation. J. Chem. Inf. Model. 49 (2009)
1669−1678.
42. D. L. J. Alexander, A. Tropsha and D. A. Winkler, Beware of R2: simple,
unambiguous assessment of the prediction accuracy of QSAR and QSPR
models. J. Chem. Inf. Model. 55 (2015) 1316−1322.
43. P. Pratim Roy, S. Paul, I. Mitra and K. Roy, On two novel parameters for
validation of predictive QSAR models, Molecules 14 (2009) 1660−1701.
44. S. Chatterjee and B. Price, Regression Analysis by Example, 2nd ed., John
Wiley & Sons, New York, 1991.
45. I. E. Frank and R. Todeschini, The Data Analysis Handbook, Elsevier,
Amsterdam, 1994.
46. M. V. Diudea, D. Horvath, A. Graovac, Molecular topology. 15. 3D
distance matrices and related topological indices. J. Chem. Inf. Comput.
Sci. 35 (1995) 129–135.
47. J. Gálvez, R. Garcìa, M. T. Salabert and R. Soler, Charge indexes: new
topological descriptors, J. Chem. Inf. Comput. Sci. 34 (1994) 520–525.
48. L. B. Kier and L. H. Hall, Molecular Connectivity in Structure–Activity
Analysis, Research Studies, John Wiley & Sons, Chichester, UK 1986, p.
262.
49. R. Todeschini and V. Consonni, Molecular Descriptors for
Chemoinformatics, Alphabetical Listing, Vol. I, Wiley-VCH, Weinheim,
2009, pp. 191.
50. J. Schuur, P. Selzer and J. Gasteiger, The coding of the three-dimensional
structure of molecules by molecular transforms and its application to
structure–spectra correlations and studies of biological activity, J. Chem.
Inf. Comput. Sci. 36 (1996) 334–344.