Spongy Diamond

Document Type: Research Paper

Authors

1 Babes-Bolyai University, Cluj, Romania

2 University of Politehnica, Timisoara, Romania

3 Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

4 University of Kashan

Abstract

Rhombellanes are mathematical structures existing in various environments, in crystal or quasicrystal networks, or even in their homeomorphs, further possible becoming real molecules. Rhombellanes originate in the K2.3 complete bipartite graph, a tile found in the linear polymeric staffanes. In close analogy, a rod-like polymer derived from hexahydroxy-cyclohexane was imagined. Further, the idea of linear polymer synthesized from dehydro-adamantane was extended in the design of a three-dimensional crystal network, named dia(s), of which tile is a hyper-adamantane (an adamantane of which vertices are just adamantanes). It was suggested that this network could be synthesized starting from the real molecule tetrabromo-adamantane, by dehydrogenation and polymerization. The crystal structures herein proposed were characterized by connectivity and ring surrounding sequences and also by the Omega polynomial.

Keywords

Main Subjects


1. M. V. Diudea, Rhombellanes – a new class of nanostructures. Int. Conf.
“Bio-Nano-Math-Chem” 2017, Cluj, Romania.

2. K. B. Wiberg, F. H. Walker, [1.1.1]Propellane. J. Am. Chem. Soc. 1982,
104 (19), 5239–5240.
3. Nomenclature of Organic Chemistry: IUPAC Recommendations and
preferred names 2013 (Blue Book). Cambridge: The Royal Society of
Chemistry, 2014. p. 169.
4. P. Kazynsky, J. Michl, [n]Staffanes: a molecular-size tinkertoy
construction set for nanotechnology. Preparation of end-functionalized
telomers and a polymer of [1.1.1]propellane. J. Am. Chem. Soc. 1988,
110 (15), 5225–5226.
5. A. Dilmaç, E. Spuling, A. de Meijere, S. Bräse, Propellanes—from a
chemical curiosity to “explosive” materials and natural products. 2016,
Angew. Chem., Int. Ed. 2017, 56, 5684−5718.
6. M. V. Diudea, Hypercube related polytopes, Iranian J. Math. Chem.
2018, 9 (1), 1−8.
7. M. V. Diudea, Rhombellanic crystals and quasicrystals, Iranian J.
Math. Chem. 2018, 9 (3), 167−178.
8. B. Szefler, P. Czeleń, M. V. Diudea, Docking of indolizine derivatives
on cube rhombellane functionalized homeomorphs, Studia Univ.
“Babes-Bolyai”, Chemia 2018, 63 (2), 7−18.
9. M. V. Diudea, Rhombellanes – a new class of structures, Int. J. Chem.
Model. 2018, 9 (2−3), 91 − 96.
10. M. V. Diudea, Cube-Rhombellane: from graph to molecule, Int. J.
Chem. Model. 2018, 9 (2−3), 97−103.
11. S. Landa, V. Machácek, Sur l’adamantane, nouvel hydrocarbureextrait
de naphte. Collect. Czech. Chem. Commun. 1933, 5, 1–5.
12. P. von R. Schleyer, A simple preparation of adamantane. J. Am. Chem.
Soc. 1957, 79 (12), 3292–3292.
13. R. Takagi, Y. Miwa, S. Matsumura, K. Ohkata, One-pot synthesis of
adamantane derivatives by domino Michael reactions from ethyl 2,4-
dioxocyclohexanecarboxylate, J. Org. Chem. 2005,70 (21), 8587−8589.
14. J. C. Garcia, J. F. Justo, W. V. M. Machado, L. V. C. Assali,
Functionalized adamantane: building blocks for nanostructure selfassembly.
Phys. Rev. B. 2009, 80 (12), 125421.
15. P. J. Steinhardt, Quasi–Crystals – A new form of matter, Endeavour
1990, 14, 112−116.
16. V. A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe, D. M. Proserpio,
Three-periodic nets and tilings: natural tilings for nets, Acta Cryst. A,
2007, 63, 418−425.

17. M. Goldberg, A class of multi-symmetric polyhedral, Tôhoku Math. J.
1937, 43, 104–108.
18. M. V. Diudea, Molecular Topology. 16. Layer matrixes in molecular
graphs, J. Chem. Inf. Comput. Sci. 1994, 34, 1064−1071.
19. M. V. Diudea, M. Topan, A. Graovac, Molecular topology. 17. Layer
matrixes of walk degrees. J. Chem. Inf. Comput. Sci. 1994, 34,
1072−1078.
20. M. V. Diudea, O. Ursu, Layer matrices and distance property
descriptors, Indian J. Chem. A 2003, 42 (6), 1283−1294.
21. C. L. Nagy, M. V. Diudea, Ring signature index, MATCH Commun.
Math. Comput. Chem. 2017, 77 (2), 479−492.
22. M. V. Diudea, C. L. Nagy, Rhombellane space filling, J. Math. Chem.
2018; DOI: 10.1007/s10910-018-0959-5.
23. M. V. Diudea, Omega polynomial, Carpath. J. Math. 2006, 22, 43−47.
24. M. V. Diudea, S. Klavžar, Omega polynomial revisited, Acta Chim.
Slov. 2010, 57, 565−570.
25. A.E. Vizitiu, S. Cigher, M. V. Diudea, M. S. Florescu, Omega
polynomial in ((4, 8) 3) tubular nanostructures, MATCH Commun.
Math. Comput. Chem. 2007, 57 (2), 457−462.
26. P. E. John, A. E. Vizitiu, S. Cigher, M. V. Diudea, CI index in tubular
nanostructures, MATCH Commun. Math. Comput. Chem. 2007, 57,
479−484.
27. C. L. Nagy, M. V. Diudea, Nano Studio Software “Babes-Bolyai”
University, Cluj, 2009.
28. M. V. Diudea, A. Pîrvan-Moldovan, R. Pop, M. Medeleanu, Energy of
graphs and remote graphs, in hypercubes, rhombellanes and fullerenes,
MATCH Commun. Math. Comput. Chem. 2018, 80, 835−852.
29. M. V. Diudea, C. N. Lungu, C. L. Nagy, Cube-rhombellane related
bioactive structures, Molecules 2018, 23 (10), 2533;
DOI:10.3390/molecules23102533.
30. M. V. Diudea, Multi-Shell Polyhedral Clusters, Springer International
Publishing, AG 2018.