Flow Polynomial of some Dendrimers

HASAN SHARIFI* AND GHOLAM HOSEIN FATH–TABAR

Department of Material Science and Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran

ABSTRACT. Suppose G is an n–vertex and m–edge simple graph with edge set $E(G)$. An integer–valued function $f: E(G) \rightarrow \mathbb{Z}$ is called a flow. Tutte was introduced the flow polynomial $F(G, \lambda)$ as a polynomial in an indeterminate λ with integer coefficients by

$$F(G, \lambda) = (-1)^{|E(G)|} \sum_{S \subseteq E(G)} (-1)^{|S|} \lambda^{n-m+c(G:S)},$$

where $c(G:S)$ is the number of connected components of G and $(G : S)$ denotes the spanning subgraph of G with edge set S. In this paper the Flow polynomial of some dendrimers are computed.

Keywords: Flow polynomial, dendrimer, graph.

1 INTRODUCTION

A simple graph $G = (V, E)$ is a finite nonempty set $V(G)$ of objects called vertices together with a set $E(G)$ of unordered pairs of distinct vertices of G called edges. In chemical graphs, the vertices correspond to the atoms and the edges represent the chemical bonds. If $x, y \in V(G)$ then the distance $d(x,y)$ between x and y is defined as the length of a minimum path connecting x and y.

For a simple graph G, integer–valued function $f: E(G) \rightarrow \mathbb{Z}$ is called a flow. Tutte was introduced the flow polynomial $F(G, \lambda)$ as a graph function and as a polynomial in an indeterminate λ with integer coefficients by

$$F(G, \lambda) = (-1)^{|E(G)|} \sum_{S \subseteq E(G)} (-1)^{|S|} \lambda^{n-m+c(G:S)},$$

*Corresponding Author (Email: sharifi_h@iust.ac.ir).
Received: June 12, 2013; Accepted: May 1, 2014.
where $c(G:S)$ is the number of connected components of G and $(G : S)$ denotes the spanning subgraph of G with edge set S [1, 5–8]. At $x = 0$, the Tutte polynomial specializes to the flow polynomial studied in combinatorics. He proved that

$$F(G, \lambda) = (-1)^{|E|+|V|+c(G)}T(G, 0, 1 - \lambda),$$

where $T(G, x, y)$ is the Tutte polynomial of graph G.

We denote the complete graph, the cycle and the path of order n by K_n, C_n and P_n, respectively.

2 The Flow Polynomial of Graphs

In this section we compute the flow polynomial of an infinite class of special type D of dendrimers. Dendrimers are complex macromolecules with very well–defined chemical structures. They consist of three major architectural components: core, branches and end groups. The topological study of these macromolecules is the subject of some recent papers [2–4]. For the sake of completeness, we mention here six results from [5] which are important in our calculations.

Theorem A. $F(G, \lambda)$ is a polynomial of degree $t = t(G)$. The coefficient of λ^t is $(-1)^t$ and all terms in $F(G, \lambda)$ have the same sign.

Theorem B. If G has no edges, then $F(G, \lambda) = 1$ and if G has a bridge, then $F(G, \lambda) = 0$.

Theorem C. If G consists of two graphs H and K which are either disjoint or have a single vertex in common, then $F(G, \lambda) = F(H, \lambda)F(K, \lambda)$.

Theorem D. If G is a cycle, then $F(G, \lambda) = \lambda - 1$.

Theorem E. $F(G, \lambda)$ is a topological invariant and hence any two homeomorphic graphs will have the same flow polynomial.

Theorem F. If e is any edge of G, then $F(G, \lambda) = F(G-e, \lambda) - F(G.e, \lambda)$, where $G.e$ contracting the edge e.

Theorem 1. Let G be a graph with two induced cycles C_m and C_n containing a common path P_{t} without bridge edge. Then the Flow polynomial of G is obtained as follows:

$$F(G, \lambda) = \left(F(C_{m-t+1}, \lambda)F(C_{n-t+1}, \lambda) + F(C_{m+n-2t+2}, \lambda)\right).$$
Proof. The graph H has two induced cycles, C_m and C_n, such that they have a path P_t in common, see Figure 1. Let P_t: $v_1e_1v_2e_2 \ldots v_{t-1}e_{t-1}v_t$ be a common path between C_m and C_n. Then we have

$$F(H, \lambda) = F(H/e_1, \lambda) + F(H - e_1, \lambda).$$

Since $H - e_1$ is a unicycle graph, then $F(H - e_1, \lambda) = F(C_{m+n-2t+2}, \lambda)$. By continuing this process, we have

$$F(H, \lambda) = F(H/e_1/e_2, \lambda) + F(H/e_1 - e_2, \lambda) + F(H - e_1, \lambda)$$

$$= F(H/e_1/e_2/e_3, \lambda) + F(H/e_1/e_2 - e_3, \lambda) + F(H/e_1 - e_2, \lambda) + F(H - e_1, \lambda)$$

$$\vdots$$

$$= F(H/e_1/e_2/e_3/\ldots/e_{t-1}, \lambda) + F(H/e_1/e_2/e_3/\ldots/e_{t-2} - e_{t-1}, \lambda) + F(H/e_1/e_2/e_3/\ldots/e_{t-3} - e_{t-2}, \lambda) + F(H/e_1/e_2/e_3/\ldots/e_{t-4} - e_{t-3}, \lambda) + \ldots$$

$$+ F(H/e_1/e_2 - e_3, \lambda) + F(H/e_1 - e_2, \lambda) + F(H - e_1, \lambda)$$

$$= F(C_m, \lambda) T(C_n, \lambda) + F(C_{m+n-2t+2}, \lambda)$$

$$= F(C_{m+t-1}, \lambda) F(C_{n+t-1}, \lambda) + F(C_{m+n-2t+2}, \lambda).$$

By above argument the proof is completed. ▀
Theorem 2. Let G be a simple graph with edge disjoint cycles without bridge edge. Then the flow polynomial of G is obtained as follows:

$$F(G, \lambda) = (\lambda - 1)^t.$$

where t is the number of cycles of G.

Proof. Apply Theorems C and D. □

Corollary 3. Let D be a dendrimer with a bridge edge then $F(G, \lambda) = 0$.

Proof. Apply Theorems F. □

References