An algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures

Document Type: Research Paper


A-8062 Kumberg, Prottesweg 2a


In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads to a reformulation of the meaning of the nonlinear Poisson-Boltzmann Equation (PBE). If a concentration and/or flux gradient of particles is considered the original structure of the PBE will be modified leading to a nonlinear partial differential equation (nPDE) of the third order.
It is shown how one can derive classes of solutions for the potential function analytically by application of pure algebraic steps. The benefit of the mathematical tools used here is the fact that closed-form solutions can be calculated and thus, numerical methods are not necessary.
The important outcome of the present study is twofold meaningful:
(i) The model equation allows the description of time dependent problems in the theory of ions, and (ii) the mathematical procedure can be used to derive classes of solutions of arbitrary nPDEs, especially those of higher order.


Main Subjects

1. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos,
Cambridge University Press, Cambridge, 1990.
2. K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to
Painlevé: A modern theory of special functions, Aspects of Math. E, Vol.
16, Vieweg, Braunschweig, Germany, 1991.
3. K. Okamoto, in: R. Conte (ed.), The Painlevé Property, One Century Later,
CRM Series in Math. Phys, SpringVerlag, New York, 1999.
4. P. A. Clarkson, Painlevé equations-nonlinear special functions, J. Comp.
Appl. Math. 153 (2001) 127−140.
5. P. Debye, E. Hückel, Du la theorie des electrolytes. I. Abaissement du point
de congelation et phenomenes associes, Z. Physik 24 (1923) 185−206.
6. H. Falkenhagen, G. Kelbg, Klassische statistik unter Berücksichtigung des
Raumbedarfs der teilchen, Ann. Physik 11 (1952) 60−64.
7. M. Born, Über die Beweglichkeit der elektrolytischen Ionen, Z. Physik 45
(1920) 221249.

8. I. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58
(1936) 1486−1493.
9. H. Falkenhagen, Elektrolyte, Verlag von Hirzel, Leipzig, 1932.
10. R. J. Hunter, Foundations of Colloid Science, Vol. 1, Clarendon Press,
Oxford, 1987.
11. J. Bockris, A. Reddy, Modern Electrochemistry, Vol. 1, Vol. 2, 2nd ed.,
Kluwer, New York, 1998.
12. G. Gouy, Sur la constitution de la charge électrique à la surface d'un
electrolyte, J. Phys. 9 (1910) 457−466.
13. D. L. Chapman, A contribution to the theory of electrocapillarity, Philos.
Mag. 25 (1913) 475−481.
14. J. D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons,
New York, 1998.
15. K. Huang, Statistical Mechanics, John Wiley & Sons, New York, 1990.
16. O. Stern, Theory of a doubleelectric layer with the consideration of the
adsorption processes, Z. Electrochem. 30 (1924) 508−516.
17. D. C. Grahame, The electrical double layer and the theory of
electrocapillarity, Chem. Rev. 41 (1947) 441−501.
18. N. Bjerrum, Der Aktivitätskoeffizient der lonen, Z. Anorg. Allgem. Chem.
109 (1920) 275−292.
19. T. Gronwall, V. La Mer, K. Sandved, Über den Einfluss der sogenannten
höheren Glieder in der DebyeHückelschen Theorie der Lösungen starker
Elektrolyte, Z. Physik 29 (1929) 358−393.
20. L. Onsager, Theories of concentrated electrolytes, Chem. Rev. 13 (1933)
21. J. G. Kirkwood, Theory of solutions of molecules containing widely
separated charges with special application to zwitterions, J. Chem. Phys. 2
(1934) 351−361.
22. J. C. Ghosh, The abnormality of strong electrolytes. Part I. Electrical
conductivity of aqueous salt solutions, J. Chem. Soc. 113 (1918) 449−458.
23. M. Smoluchowski, Molekularkinetische Theorie der Opaleszenz von
Gasen im kritischen Zustand, Ann. Phys. 25 (1908) 205−226.
24. H. C. Parker, The conductance of dilute aqueous solutions of hydrogen
chloride, J. Am. Chem. Soc. 45 (1923) 2017−2033.
25. P. Walden, H. Ulich, Weitere Zahlen in der von Walden kritisch
bearbeiteten Übersicht in LandoltBörnsteinRothScheel, Z. Physik
Chem. 106 (1923) 49−92.

26. M. Planck, Über die Potentialdifferenz zwischen zwei verdünnten
Lösungen binärar Elektrolyte, Ann. Phys. Chem. 40 (1890) 561−576.
27. R. M. Fuoss, F. Accascina, Electrolytic Conductance, Intersci. Publ. Inc.
New York, 1959.
28. G. Kortüm, J. Bockris, Textbook of Electrochemistry, Vol. 1, Elsevier,
Amsterdam, 1951.
29. G. Kortüm, Lehrbuch der Elektrochemie, 5th ed., Verlag Chemie, 1972.
30. J. Larsson, Electromagnetics from a quasistatic perspective, Am. J. Phys.
75 (3) (2007) 230−239.
31. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.
32. H. A. Haus, J. R. Melcher, Electromagnetic fields and energy, Prentice
Hall Inc., New York, 1989.
33. A. Huber, A new time dependent approach for solving electrochemical
interfaces part I: theoretical considerations using Lie group analysis, J.
Math. Chem. 48 (2010) 856−875.
34. A. Huber, Algebraic approaches for solving time-dependent
electrochemical interfaces, Int. J. Res. Rev. Appl. Sci. 6 (1) (2011) 1−9.
35. A. Huber, An algebraic approach for solving time-dependent potentials,
MATCH Commun. Math. Comput. Chem. 66 (1) (2011) 205−217.
36. A. Huber, A new time dependent approach for solving electrochemical
interfaces theoretical considerations using algebraic approaches, MATCH
Commun. Math. Comput. Chem. 67 (1) (2012) 91−107.
37. A. Huber, Extensions to study electrochemical interfaces, A contribution
to the theory of ions, Iranian J. Math. Chem. 5 (1) (2014) 31−46.
38. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.
39. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, 10th
print, Nat. Bureau of Standards, New York, 1972.
40. I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products,
Academic Press, New York, 1965.
41. A. Huber, A note on class of travelling wave solutions of a nonlinear thirdorder
system generated by Lie’s approach, Chaos, Solitons and Fractals,
32 (4) (2007) 1357−1363.
42. A. Huber, Solitary solutions of some nonlinear evolution equations, Appl.
Math. and Comp. 166 (2) (2005) 464−474.
43. A. Huber, A novel class of solutions for a nonlinear third order wave
equation generated by the Weierstraß transform method, Chaos, Solitons
and Fractals 28 (4) (2006) 972−978.

44. A. Huber, A generalized exponential transform method for solving
nonlinear evolution equations of physical relevance, Appl. Math. Comput.
215 (1) (2009) 344−352.
45. A. Huber, On the connection of Lambert functions and classes of solutions
of nonlinear evolution equations, Int. J. of Res. and Rev. in Appl. Sci. 3 (1)
(2010) 47−54.
46. P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers
and Scientists, 2nd ed., Springer−Verlag, New York-Heidelberg, 1971.