The First Geometric–Arithmetic Index of Some Nanostar Dendrimers

Ali Madanshekaf* and Marjan Moradi

(Communicated by Ali Reza Ashrafi)

Department of Mathematics, Faculty of Sciences, Semnan University, Semnan, Iran

Abstract. Dendrimers are highly branched organic macromolecules with successive layers or generations of branch units surrounding a central core [1, 4]. These are key molecules in nanotechnology and can be put to good use. In this article, we compute the first geometric-arithmetic index of two infinite classes of dendrimers.

Keywords: nanostar dendrimer, the first geometric-arithmetic index.

1. Introduction

Investigations of topological indices based on end–vertex degrees of edges have been conducted over 35 years. One of them is the first geometric–arithmetic index \((GA_1)\). The \((GA_1)\) index defined as:

\[
GA_1(G) = \sum_{uv \in E(G)} \frac{\sqrt{d_u d_v}}{2(d_u + d_v)}
\]

has been introduced less than a year ago [2, 3, 5]. Here \(d_u\) denotes degree of vertex \(u\) and so on.

Dendrimer is a synthetic 3-dimentional macromolecule that is prepared in a step-wise fashion from simple branched monomer units. The nanostar dendrimer is a part of a new group of macromolecules that appear to photon funnels just like artificial antennas. In this article many attempt have been made to compute the first geometric-arithmetic index for two types of nanostar dendrimers.

* Corresponding author.

Received: March 25, 2013; Accepted: May 1, 2014.
2. RESULTS AND DISCUSSION

Lemma 1. Consider the complete graph K_n of order n. The first geometric-arithmetic index of this graph is computed as follow:

$$GA_1(K_n) = \frac{1}{2} n(n-1).$$

Proof. The degree of all the vertices of a complete graph of order n is $n-1$ and the number of edges for K_n is equal $\frac{1}{2} n(n-1)$, thus

$$GA_1(K_n) = \sum_{uv \in E(K_n)} \frac{\sqrt{d_u d_v}}{2(d_u + d_v)} = \frac{1}{2} n(n-1) \frac{\sqrt{(n-1)^2}}{\frac{1}{2} 2(n-1)} = \frac{1}{2} n(n-1).$$

Lemma 2. If G is a regular graph of degree $r>0$, then

$$GA_1(G) = \frac{nr}{2}.$$

Proof. A regular graph G on n vertices, having degree r, possesses $\frac{nr}{2}$ edges, thus

$$GA_1(G) = \sum_{uv \in E(G)} \frac{\sqrt{d_u d_v}}{2(d_u + d_v)} = \frac{nr}{2} \frac{\sqrt{r^2}}{\frac{1}{2} 2(r + r)} = \frac{nr}{2}.$$

Lemma 3. Let S_n be a star on $n+1$ vertices (Figure 1), then

$$GA_1(S_n) = \frac{2n\sqrt{n}}{n+1}.$$

Proof. It is easily seen that there are n vertices of degree 1 and a vertex of degree n. Therefore,

$$GA_1(S_n) = \sum_{uv \in E(K_n)} \frac{\sqrt{d_u d_v}}{2(d_u + d_v)} = \frac{2n\sqrt{n}}{n+1}.$$

Figure 1. Star graph with $n+1$ vertices.
2.1 The First Geometric-arithmetic Index of the First Class of Nanostar Dendrimers

Consider a graph G on n vertices, where $n \geq 2$. The maximum possible vertex degree in such a graph is $n-1$. Suppose d_{ij} denote the number of edges of G connecting vertices of degrees i and j. Clearly, $d_{ij} = d_{ji}$. We now consider two infinite classes $NS_1[n]$ and $NS_2[n]$ of nanostar dendrimers, Figures 2 and 3. The aim is to compute the first geometric-arithmetic index for two of these nanostar dendrimers.

We consider the molecular graph of $K(n) = NS_1[n]$ with four similar branches and three extra edges, where n is steps of growth in this type of dendrimer nanostars (Figure 2). Define d_{23} to be the number of edges connecting a vertex of degree 2 with a vertex of degree 3, d_{13} to be the number of edges connecting a vertex of degree 1 with a vertex of degree 3, d_{22} to be the number of edges connecting two vertices of degree 2 and d_{12} to be the number of edges connecting a vertex of degree 1 with a vertex of degree 2. Also d'_{ij} denote the number of edges connecting vertices of degrees i and j in each branch ($i, j \leq 4$).

It is obvious that $d_{12} = 4d'_{22} + 1$, $d_{22} = 4d'_{22} + 1$, $d_{13} = 4$, d'_{13} and $d_{23} = 4d'_{23} + 2$. On the other hand a simple calculation shows that $d_{12}' = 2^{n-1}$. Therefore, $d_{12}' = 4d'_{12} = 2^n$. Using a similar argument, one can see that $d_{22}' = 3(n-1)$ then $d_{22}' = 12.2^n - 11$, $d_{13}' = 2^n - 1$ then $d_{13}' = 4d'_{13} = 4.2^n - 4$ and finally $d_{23}' = 3(2^n - 1) + (2^{n-1} - 1)$ then $d_{23}' = 4d'_{23} + 2 = 14.2^n - 14$.

Theorem 4. The first geometric-arithmetic index of $K(n) = NS_1[n]$ is

$$G_{A_1}(K(n)) = \left(\frac{4\sqrt{3}}{3} + 12 + 2\sqrt{3} + \frac{28\sqrt{6}}{5}\right)2^n - (11 + 2\sqrt{3} + \frac{28\sqrt{6}}{5}).$$

Proof. We have $G_{A_1}(K(n)) = \sum_{uv \in E(K(n))} \frac{d_u d_v}{2(d_u + d_v)}$. Then

$$G_{A_1}(K(n)) = \left(\frac{2\sqrt{2}}{3} + (12.2^n - 11) + (4.2^n - 4)\frac{\sqrt{3}}{2} + (14.2^n - 4)\frac{2\sqrt{6}}{5}\right)2^n$$

$$= G_{A_1}(K(n)) = \left(\frac{4\sqrt{3}}{3} + 12 + 2\sqrt{3} + \frac{28\sqrt{6}}{5}\right)2^n - (11 + 2\sqrt{3} + \frac{28\sqrt{6}}{5}).$$

2.2 The First Geometric-arithmetic Index of the Second Class of Nanostar Dendrimers

We consider the second class $H(n) = NS_2[n]$, where n is steps of growth. Since the molecular graph of H has four similar branches and five extra edges (Figure 3), $d_{12} = 4d'_{12}$,
\[d_{22} = 4d'_{22} + 3 \quad \text{and} \quad d_{23} = 4d'_{23} + 2. \] By a routine calculation we have \(d'_{12} = 2^{n-1} \), \(d'_{22} = 2(2^n - 1) \) and \(d'_{23} = 3.2^{n-1} - 2 \). One can prove that \(d_{12} = 2^{n+1} \), \(d_{22} + 8.2^n - 5 \) and \(d_{23} = 6.2^n - 6 \).

Figure 2. \(NS_1[1] \) and \(NS_1[n] \) PAMAM Dendrimer.

Theorem 5. The first geometric-arithmetic index of \(H(n) = NS_2[n] \) is computed as follows:

\[
GA_1(H(n)) = \left(\frac{4\sqrt{2}}{3} + 8 + \frac{12\sqrt{6}}{5} \right)2^n - (5 + \frac{12\sqrt{6}}{5})
\]

Proof. By definition, we have:

\[
GA_1(H(n)) = \sum_{uv \in E(H(n))} \frac{\sqrt{d_ud_v}}{\frac{1}{2}(d_u + d_v)}
\]

\[
= 2^{n+1} \frac{2\sqrt{2}}{3} + (8.2^n - 5) + (6.2^n - 6) \frac{2\sqrt{6}}{5}
\]

\[
= \left(\frac{4\sqrt{2}}{3} + 8 + \frac{12\sqrt{6}}{5} \right)2^n - (5 + \frac{12\sqrt{6}}{5}).
\]
Figure 3. $\text{NS}_2[1]$ and $\text{NS}_2[n]$ Polypropylenimin octaamin Dendrimer.

In Table 1, this topological index are calculated for two classes of dendrimers.

Table 1. GA$_1$ Index for some Dendrimer Graphs.

<table>
<thead>
<tr>
<th>n</th>
<th>GA$_1$ Index of NS$_1$[n]</th>
<th>GA$_1$ Index of NS$_2$[n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.9525</td>
<td>20.6500</td>
</tr>
<tr>
<td>2</td>
<td>96.0862</td>
<td>52.1788</td>
</tr>
<tr>
<td>3</td>
<td>220.3537</td>
<td>115.2364</td>
</tr>
<tr>
<td>4</td>
<td>468.8886</td>
<td>241.3515</td>
</tr>
<tr>
<td>5</td>
<td>965.9583</td>
<td>493.5818</td>
</tr>
<tr>
<td>6</td>
<td>1960.1000</td>
<td>998.0424</td>
</tr>
<tr>
<td>7</td>
<td>3948.4000</td>
<td>2007.0000</td>
</tr>
<tr>
<td>8</td>
<td>7924.9000</td>
<td>4024.8000</td>
</tr>
<tr>
<td>9</td>
<td>15878.0000</td>
<td>8060.5000</td>
</tr>
<tr>
<td>10</td>
<td>31784.0000</td>
<td>16132.0000</td>
</tr>
</tbody>
</table>

REFERENCES

