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ABSTRACT. In the present study an alternative model allows the extension of the Debye-
Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic
approach (EQS) done in earlier studies time dependent potentials are suitable to describe
several phenomena especially conducting media as well as the behaviour of charged particles
in arbitrary solutions acting as electrolytes.

This leads to a new formulation of the meaning of the nonlinear Poisson-Boltzmann
Equation (PBE). If a concentration and/or flux gradient of particles is considered the original
structure of the mPBE will be modified leading to a new nonlinear partial differential equation
(nPDE) of the third order. It is shown how one can derive classes of solutions for the potential
function analytically by application of an algebraic method. The benefit of the mathematical
tools used here is the fact that closed-form solutions can be calculated without any numerical
approximations.

Keywords: Nonlinear partial differential equations, DebyeHückel theory,
PoissonBoltzmann equation.

1. PRELIMINARIES

We summarize some known ideas and give a short overview whereby the remarks are far
from being complete. We restrict us as short as possible however some important notes
should indicate a historical point of view. There is a good historical reason to deal the
subject. When the developments of interefacial electrochemistry along modern lines
became restricted by the overthermodynamics attidude of its adherents in the pre-1950
days, much attention was diverted to what had seemed  previously to some extent the
accompanying side issues, i.e. the physical chemistry of the bulk solution adjoining the
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double layer. This had concentrated upon an interest in the deviations in the behaviour of
solutions from laws derived on the assumption that interaction between particles in them
was negligible. It is known that the properties of electrolyte solutions can significantly
deviate from the laws used to derive the chemical potential of solutions. In non-electrolyte
solutions the intermolecular forces are mostly comprised of weak Van der Waals
interactions, which have a 7 r dependence (in principle), and for practical purposes this
can be considered as ideal. In ionic solutions, however, there are significant electrostatic
interactions between solute-solvent as well as solute-solute molecules. These electrostatic
forces are governed by Coulomb's law which has a 2 r dependence. Consequently, the
behaviour of an electrolyte solution deviates considerably from that an ideal solution. Thus,
the famous DHT of such interactions attracted the attention of electrochemists away from
the blocked interface studies [1]. The DHT was proposed as a theoretical explanation for
departures from ideality in solutions of electrolytes [2].  Thus from about 1920 to 1950 the
majority of research  in this domain were occupied with determining activity coefficients of
salts in dilute aqueous solutions , the electrical conductance of molten salts, or electrostatic
effects of the dissociation constant of acids or bases in aqueous solutions [3], [4]. Note, that
by applying the DHT restrictions have taken into account, such like much diluted solutions,
completely dissociation and more [5]. Contemporaneously, Helmholtz considered a double-
layer model wherein he proposed a simple charge separation at the interface [6]. Gouy [7],
[8] developed an electric double-layer model that includes the effects both of the electric
potential and ionic concentration with the aid of the Boltzmann distribution [7], [9]. A
further contribution was done by Chapman [10]. He established the steady-state governing
equation for the diffuse layer, the Poisson-Boltzmann equation [7]. This equation is based
upon the combination of the electrostatic basic equation, the Poisson Equation [11], and the
Boltzmann distribution [12]. The model is referred to as the Gouy-Chapman model.
Further, Stern [13] improved the Gouy-Chapman model by assuming a finite ion size and
by dividing the electrolyte into two layers, specified to as the Stern layer and the diffuse
layer. Later on Grahame [14] revised the Stern model using three layers: the inner
Helmholtz layer (IHL), the outer Helmholtz layer (OHL) and the diffuse layer. The
difference between the Grahame model and the Stern model is due to the existence of
specific adsorption [7]. A transient version of the model [7] is referred to as the Nernst-
Planck-Poisson-modified Stern model or simply the Nernst-Planck-Poisson (NPP) model if
there is no modified Stern layer. During the past 80 decades several well-known scientists
did their contributions in this domain. Unfortunately only a few numbers is mentioned like
Bjerrum [15], Gronwall, La Mer, Sandved [16], Onsager [17], Kirkwood [18], Falkenhagen
[2], [5], Ghosh [19], Smoluchowski [20], Parker [21], Walden [22], Planck [23], Fuoss
[24], Kortüm [25], [26], and extensive developments are not finalized up to now.
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1. 1. ELECTROMAGNETICS FROM A QUASISTATIC PERSPECTIVE

General theory can be found in [27], [28], and [29]. Here only the essentials are cited.
The quasistatic limit of the Maxwell Equations (MEs) is a kind of c limit (the fields
propagate at once) obtained by neglecting time retardation. EQS has important applications
modelling transient phenomena in approximating theories for materials with low
conductivity (or low-frequency approximation). The crucial step is the fact that the time-
dependent electric field may derived from a scalar potential which is, in our case the
solution of a certain nPDE of the third-order [30]. Transient electrodynamical problems are
not easy to solve in general, e.g. by occurring solutions depending on roots we have to take
into account branch points. In media with a finite conductivity a static field is not possible
and the pertinent relaxations time is given by  /0 [28], where  is the relative
permittivity and  the conductivity.

For metals (e.g. copper) the relaxation time is in the range of 1810 s. Otherwise,
new developments on the material sector produces materials with a relative dielectric
constant in the range 42  and a conductivity of about 910 S/m. Then the decay rate is
approximately 310 s and this is long compared to other time constants of the system
(e.g. an electromagnetic field passes through a panel). This is exactly the field where EQS
can be applied [28], [29] and only pure capacitive effects are of interest. In further studies
considering both capacitive and inductive effects the Darwin model will be used. Note that
statics is just a particular case of the general MEs but quasistatics is an approximation.

2. DERIVATION OF THE MODEL EQUATION

It is stressed that the basic assumption of the DHT is the connection between the
electrostatic Poisson equation and the Boltzmann distribution. However, this needs some
assumptions: (i) the forces are shortranged, (ii) only Coulomb forces are undertaken (no
dispersion forces), (iii) the involved particles are assumed to be point-like and unpolarized,
(iv) the dielectric constant of the solution is assumed to be the same as the solvent and (v)
electrolytes are dissociated completely. To derive the new model equation one starts from
the MEs [11]:
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Note: The fields DBE


,, and H


are assumed time-dependent explicitly. Also the impressed
current density and the charge density are functions of both arguments. However in this
study the material constants are assumed as scalar quantities, that means )(t and )(t .

It is assumed that there is both a weak current density due to the electric field and an
impressed current density ej


. The EQS assumption now means that the sources act slowly

so that the fields change slowly and the conductivity  is rather small. Therefore the
magnetic fields (the solenoidal part of the electric field) are negligibly small. From the EQS
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0 . Taking the divergence of the second equation of

(2.1) one derives at an equation containing the unknown potential function ),( txuu 
depending upon their time derivative:
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Then the concentration of particles due to diffusion will be considered. In general diffusion
requires a gradient of the concentration of the particles. Under ‘balanced’ conditions the
situation may be regarded as tantamount to equilibrium because there is no net flux or
transport of ions. Hence, the Boltzmann law can be used. The argument is, that, since the
field varies along the x-direction, the concentration of the ions at any distance x is given
by


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kT
ueizcic 0exp0 , (2.3)

where ),( txu  is the potential energy of an ion in the applied field and 0c is the concentration
in a region where the potential energy is zero (as )x . Differentiating one obtains
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Otherwise, from Fick’s law one has a contribution to the current density of the form
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and finally, the relation to the total charge density is therefore given by
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For the second contribution it is obvious from the DHT that
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0u is the potential at any surfaces and Lu is the potential in the electrolyte far away from a

reference ion (for further discussion we set 0Lu , hence uu 0 ); iz is the charge

number, 0e the elementary charge, k the Boltzmann constant, T is the temperature and
0
iN is the particle number in the bulk, F the Faraday’s constant and D means the

diffusion coefficient. So one has both contributions of the r.h.s. of eq.(2.2) and the new
model equation reads as
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Note: Precisely for the charge density a mean value is used in eq.(2.7) and  is the
Laplacian. For further considerations one-valued ions are assumed so that .1 zz i Both the
arguments of the potential function ),( txu

 will be suppressed, that means simply
.),( utxu 

 The potential function utxu ),(
 represents the ion’s potential surrounded by the

‘ion cloud’. In further meaning this function describes the time-dependent potential of an
arbitrary metal electrode (due to the restrictions underlying by the EQS not all metals can
be considered) dipping in a liquid electrolyte. Note that a standard concentration of

lmolc /01,0 , resp. ic for the concentration of the i-th ion at a standard temperature of

KT 15,293 is assumed ( CT o20 ).
For the following we take the conversion for the concentration: Let
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which is more useful in practical calculations later as well as by interpreting double layer
devices. It is convenient to introduce the following abbreviations:
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Finally one derives at the following nPDE of the third-order for the unknown time-
depending potential function ),( txuu  :
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At this stage let us impose formally boundary conditions so that Lx
uu 

 0lim and

0lim  dx
du

x holds; they are necessary conditions later for the function ),( txuu  . We

seek for solutions for the nPDE, eq.(2.10) for which ,),( txFu  23 ,)( RDDCF  is an

open set and further we exclude  .....,0,0,0:~)),((:  tx uuuDtxuD and a positive
time 0t . Suitable classes of solutions are Iu , I an interval so that DI  and

2: RIu  . Since it is always not an easy task to solve nPDEs analytically we wish to
solve the nPDE, eq.(2.10) analytically by use of an algebraic method. In the following note
we summarize the basic facts of the hyperbolic tangent method [31], [32] which is used
below (only the basic steps are proposed).
Note: Consider a given nPDE in its two independent variables x and t

0,,......,,,,, 1

1

2

2





































n

n

n

n

x
u

x
u

t
u

x
u

x
u

t
u

x
uuP . (a)

Firstly the nPDE converts into a nonlinear ordinary differential equation (nODE) by using a
frame of reference )(),(  ftxu , tx  and  is a constant to be determined. Thus one
has

  0....,)('',)(',)(  fffQ . (b)

The next step is that the solution can be expressed in terms of the following series
representation by using an auxiliary variable )( such that
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Now one assumes that )( satisfies a Riccati Equation of the form
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 )(1)(' 2
1 




 k
d
d (d)

and 1k means a constant. The parameter n in eq.(c) is found by balancing the highest
derivative with the nonlinear terms in the reduced nODE eq.(b). Moreover, this parameter
must be a positive integer since it represents the number of terms in the series (c). In the
case of fractions one can take transformations as shown later. Substituting (c) and (d) into
the relevant nODE will yield a system of nonlinear polynomial equations with respect to

0a , 1a , …. , 1k and  .Solutions of the Riccati Equation can be expressed depending upon
the constant 1k

  11 tanh)( kkw ,   11 coth)( kkw , for 01 k , (e)

    1111 cottan)( kkkkw . for 01 k . (f)

Remark: The case 01 k will be excluded here although a solution exists [31]. It represents
a useless solution for our purposes. To prevent confusions with the Boltzmann constant the
character k is marked.

2. 1. THE APPLICATION OF THE HYPERBOLIC TANGENT METHOD – SOLUTION

PROCEDURE

We convert the eq.(2.10) by )(),(  ftxu , tx  to derive the nODE of the third-
order
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Note: The similarity transformation is called the traveling wave reduction describing any
wave propagation and  means the velocity. However if we assume the EQS model
solutions of electromagnetic field problems can not represent traveling waves.

We seek for solutions for which )( Fv , where 3RF  and 2RD  is an open

set and further we exclude  0)(:~),(:  fDfD . Suitable solutions are Iv , I an

interval so that DI  and 2: RIv  . Since the l.h.s of eq.(2.11) is a continuous function
we ensure at least existence locally and due to the lemmas both from Peano and Picard-
Lindelöf we assume uniqueness (also at least locally) in a given domain.
The question is: Can we integrate the nODE so that we can write the nODE, Eq. (2.11) in a
complete differential form? Indeed, one has
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Integrating once with C as an arbitrary constant of integration gives a second-order nODE
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Note: During calculations it could have been shown that one can set the integration
constant equal to zero without loss of generality. Here this constant will act as an arbitrary
calculation quantity without any relation to the problem.

The transformation )]([ln1)( 
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 wf will remove the exponential function

yielding a further second-order nODE for the new dependent variable )(w :
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To apply the algorithm performed in the note above it is necessary to know the quantity n
in the series representation of eq.(c). It can be shown that two values exists: 11 n and

22 n . This is not possible since this quantity must be n +. Introducing further a new

dependent variable )(p by the transformations 1
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give a second-order nODE for the function )(p :
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Note: Further analysis has shown that the inverse quadratic transformation only led to
trivial solutions. We stress that 0p is the singular point of this nODE.

The balancing procedure will result into two cases: (i) 11 n and (ii) 22 n . Case

(i) results into trivial solutions thus the quadratic form 2
210)( vavaap  is suitable.

Using this, considering eq.(d) and inserting into the relevant nODE eq.(2.15) a nonlinear
homogeneous algebraic system of equations for the unknown coefficients have to be solved
consistently. In total seven equations exist; for saving space we stress the first and the last
equations
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From the seven solutions totally the only non-trivial solution yields
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Transforming back a compact written form for the potential function is given by
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or explicitly in terms of time and space variables
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For further calculations the exponential form may be preferred; so we have
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with   eeA and   eeB .

Note: In order to realize real-valued solutions the constant 1k must be 01 k and the root
terms become positive (during analysis we assume 11 k ). Moreover eq.(2.18) is the only
appropriate solution for the chemical problem since the second solution of eq.(e) becomes
singular. To ensure non-vanishing solutions the argument of the logarithm function must be
greater than identity (that means that the relation   1tanh12 2  holds).

From the laws of logarithms it follows that  21 ln  const . This contribution will
act as a shift for the ),( f curve. For imagination a concrete example is given: Consider the
values for KCl in water [33] and inserting the relevant quantities ones derived at

95,1. const . A sketch of the functions is given in Figure 1.
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Figure 1. Comparison Between the Regular Solution Eq. 2.18.

Left containing the hyperbolic tangent function and the singular solution containing the
hyperbolic cotangent,

Right. The regular solution covers the boundary condition so that the solution tends to a
finite value. Taking a limit analysis one can prove 035,0)(lim   f . This finite value

can be interpreted as a finite potential value in any electrolytes. The first derivative exists
(meant as the second boundary condition) and vanishes as  as to be required. The
positive branch of the singular solution may be considered as a potential starting on a
conducting surface leading into a constant value in any liquids.

2. 2. A NUMERICAL STATEMENT

As mentioned above the highly nPDE eq.(2.11) and all nODEs derived from it, especially
the nODE eq.(2.15) can only be solved under special circumstances, e.g. any similarity
transformations. It is clear that by applying numerical standard procedures a closed-form
solution is always obtained (considering suitable boundary and/or initial conditions). One
of these standard procedures is the representation in ascending power series which is useful
in numerical calculations. At the regular point 0 of the nODE eq.(2.15) one can assume
a series representation up to order four in the form (here we set the constants  ,  equal to
identity and 2 since they do not influence the result necessarily):
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with arbitrary chosen coefficients 0a , 1a but 00 a .In figure 2 some integral curves are
shown.



Extensions to study electrochemical interfaces, A contribution to the theory of ions 41

-4 -2 0 2 4
-10
-5
0
5

-4 -2 0 2 4-40
-20
0
20
40

-4 -2 0 2 4
-30
-20
-10
0
10
20

Figure 2. Some integral curves of the nonlinear nODE, eq.(2.15) generated by the series
representation eq.(2.19).

Different values of the coefficients ia are used. Left the domain
)1,1(),()1,1( 10  aa , middle the domain )1,1(),()3,1( 10  aa and right the domain
)1,1(),()3,2( 10  aa . Parabolic forms of the potential function and behaviour of the order

three is evident in the positive as well as negative directions.

3. ANALYSIS

Let us summarize in short: Our main task was to solve the nPDE, eq.(2.10) in an analytical
way dispensing any numerical approaches. This can be done by keeping in mind the special
function methods. Although the eq.(2.10) is highly nonlinear, algebraic methods can
therefore be applied successfully. A closed-form solution was then derived by the explicit
formula for the time-dependent solution function eq.(2.18). By taking a limiting analysis it
was shown that the potential function eq.(2.18) satisfies the required boundary conditions.
Now we are interested in further quantities. The electric field can then derived from the
potential (we further use the variable  )  by application of the gradient operator ( E


)

to give
        

     









4exp12exp1
12exp2exp2tanh2sec

)(
h

E


, 0 , (3.1)

where we have converted the hyperbolic functions into an exponential representation and
2 txtx holds. In figure 3 the electric field distribution is seen. This field

distribution may be considered around a point-like charge in the centre (by assuming 1 )
symmetrically. To derive the charge density one has to apply the divergence operator upon
the electric field (  also acts as the local coordinate):
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         


 tanh2sec2sec2sec
8

1)( 22 hhh , 0 . (3.2)
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Figure 3. The electrical field distribution derived from eq.(3.1). It can be shown that the
field is of conservative character since by considering Cartesian coordinates, e.g.

),,( zyx  the relation 0Erot


holds (it means that the field is irrotational or

equivalently, the existence of the potential is secured since the curl of the field vanishes).

To show that the field is really solenoidal one introduces Cartesian coordinates for
the electric field, eq.(3.1) so that ),,( zyx EEEE 


. Then we have per definition with a unit

vector ie :
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Now it follows that (only the first component xE is considered)

0...............tan2coshtan2cosh


x
xx

y
yy

Erot yx


, 0,0  yx . (3.1.b)

The charge density represents an analytical function except as 0 where the function is
singular. From a limiting analysis it can be shown that the charge density vanishes as

 , that is 0)(lim 


. Also it can be shown that for small values of the charge

density, that is 0 , the charge density will take a finite value such that



12/7)(lim

0
holds.
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That means by considering an arbitrary surface this surface will be charged by the given
amount of charges of 12/7 .

Let a be a specific distance (e.g. from the electrode surface to the centre of the
hydrated ions in the OHL, the Outer Helmholtz Layer). The total charge totq contained in
the OHL is obtained by integrating the charge density )( from the electrode surface with
the reference point taken at infinity. Therefore we have from eq.(3.2):

    
     aExpaExp

aExpaExp
dq

a
tot 41212

122
)(




 



, (3.3)

and totq takes a function of the distance a .To avoid singularities one has to exclude special

values of the denominator, e.g.  16/,4/,16/9,0 222 a , and, for completeness

some complex numbers     4/324/12 )1(log,)1(log a .
Let us study two limit cases: (i) for small distances, say, 0a , the total charge

tends to a constant factor:  4/1totq (this may be interpreted as the square of the first

spherical harmonics 2
00Y ); (ii) for large distances it is shown that 0totq as a . This

is also in agreement with the boundary conditions assumed earlier and matches our
expectation exactly. In the following figures we show the charge density derived from the
eq.(3.2) compared with the total charge density from the eq.(3.3).
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Figure 4. Comparison between the charge density from eq.(3.2) as a function of the
dependent variable  left and the total charge density as a function of the distance
a calculated from eq.(3.3).

3. 1. FURTHER PROPERTIES OF THE INVOLVED QUANTITIES

For practical numerical calculation some series representations both of the potential and the
electrical field is useful. Since the function eq.(2.18) is a continous differentiable function
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one can calculate an alternating representation as 0 (but the series diverges). Thus a
convergent series as 1 is given by

          5432 11032,01064,01120,01202,01)( 

 OAf , (3.4)

where we have used the abbreviation











151,1.constA and .const from above.

The convergence is relatively slow but in first order approximation a linear
dependence is a good compromise. In the same manner for the electrical field it follows
from, Eq. (3.1)

        432 111330,011922,012405,0202,01)( 

 OE


. (3.5)

Since the function takes singular as 0 the series is taken up from the point 1 .

Note: One can asks if the potential function eq.(2.18) is a square-integrable function. That

means one has to find a real, finite constant M so that the relation 



 Mdf  2)(

holds. Taking into account the laws of logarithm one can transform eq.(2.18) into a sum of
logarithmic parts. The integration shows that all these sums diverge and the latter relation is
not satisfied (thus )()( 2 nRLf  ). Consider appropriate domains, e.g. 10  , the existence
of the constant M is given and a normalization is feasible. This may be important by
representing the potential function in terms of orthonormalizations and closure relations
related with different basis sets.

4. SUMMARY

Let us summarize in short: Due to our special model one is able to show that a special form
of the PBE could solved exactly without any numerical calculations. However some
restrictions (due to the EQS assumption) have been taken into account. For this special
model, four important quantities could derive: (i) The potential of an electrode and/or the
potential distribution of some charged particles, (ii) the electric field around an electrode
and/or the field distribution inside a medium, (iii) the charge density, (iv) the charge density
in the OHL.

In this paper we extended our model equation to cases in which concentration and
diffusion play a further role. A further possible extension of this time-depending model will
be the case if ions and/or charged particles will move in electric and/or magnetic fields.
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