Fractal-Like Kinetics Study of Adsorption on Multi-walled Carbon Nanotube

Document Type: Research Paper

Authors

University of Kashan

Abstract

The fractal degree of adsorption on the multi-walled carbon nanotube has been investigated. The fractal-like Langmuir kinetics model has been used to obtain the fractal degree of ion adsorption on multi-walled carbon nanotube. The behavior of the fractal-like kinetics equation was compared with some famous rate equations like Langmuir, pseudo-first-order and pseudo-second-order equations. It is shown that the kinetic of adsorption onto multi-walled carbon nanotube can be used to obtain its spectral dimension, successfully.

Keywords

Main Subjects


1. D. Avnir, D. Farin and P. Pfeifer, Chemistry in noninteger dimensions between
two and three. II. Fractal surfaces of adsorbents, J. Chem. Phys. 79 (1983)
3566−3571.
2. P. Pfeifer, M. Obert and W. M. Cole, Fractal BET and FHH theories of adsorption:
a comparative study, Proc. R. Soc. London Ser. A 423 (1989) 169−188.
3. P. Pfeifer and D. Avnir, Chemistry in noninteger dimensions between two and
three. I. Fractal theory of heterogeneous surfaces, J. Chem. Phys. 79 (1983)
3558−3565.
4. M. K. Ismail and P. Pfeifer, Fractal analysis and surface roughness of nonporous
carbon fibres and carbon backs, Langmuir 10(5) (1994) 1532−1538.
5. S. Ozeki, Estimation of Pore and Surface Structures of Solids by Dye Analysis
Adsorption: The Preadsorption Method and Fractal, Langmuir 5 (1989) 186−191.
6. E. C. N. Lopez, F. S. C. dos Anjos, E. F. S. Vieira and A. R. Cestari, An alternative
Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with
thin chitosan membranes, J. Colloid and Interface Sci. 263 (2003) 542−547.
7. I. Langmuir, The Adsorption of Gases on Plane Surfaces of Glass, Mica and
Platinum, J. Am. Chem. Soc. 40 (1918) 1361−1403.
8. R. Kopelman, Fractal Reaction Kinetics, Science 241 (1988) 1620−1626.
9. P.W. Klymko and R. Kopelman, Fractal reaction kinetics: exciton fusion on
clusters, J. Phys. Chem. 87 (1983) 4565–4567.
10. Y. Wang, H. Zhou, F. Yu, B. Shi and H. Tang, Fractal adsorption characteristics of
complex molecules on particles - A case study of dyes onto granular activated
carbon (GAC), Colloids and Surfaces A: Physicochem. Eng. Aspects 299 (2007)
224–231.

11. H. Bashiri and A. Shajari, Theoretical Study of Fractal-Like Kinetics of
Adsorption. Adsorption Science & Technology 32(8) (2014) 623−634.
12. F. A. Houle and W. D. Hinsberg, Stochastic simulations of temperature
programmed desorption kinetics, Surf. Sci. 338 (1995) 329−346.
13. H. Bashiri, Desorption Kinetics at the Solid/Solution Interface: A Theoretical
Description by Statistical Rate Theory for Close-to-Equilibrium Systems, J. Phys.
Chem. C 115 (2011) 5732−5739.
14. H. Bashiri, A new solution of Langmuir kinetic model for dissociative adsorption
on solid surfaces, Chem. Phys. Lett. 575 (2013) 101–106.
15. Ch. Chen, J. Hu, D. Shao, J. Li and X. Wang, Adsorption behavior of multiwall
carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II), J. Hazard.
Mater. 164 (2009) 923−928.
16. G. D. Vukovic, A. D. Marinkovic, S. D. Skapinc, M. Ristic, R. Aleksic, A. A.
Peric-Grujic and P. S. Uskokovic, Removal of lead from water by amino modified
multi-walled carbon nanotubes, Chem. Eng. J. 173 (2011) 855−865.
17. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid and
Interface Sci. 276 (2004) 47−52.
18. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, K. Sven.
Vetenskapsakad. Handl. 24(4) (1898) 1−39.
19. Y.S. Ho and G. McKay, The kinetics of sorption of divalent metal ions onto
sphagnum moss peat, Water Res. 34(3) (2000) 735−742.