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The theoretical treatment of cycle-effects on total ߨ-electron energy, 
mainly elaborated by Nenad Trinajstić and his research group, is re-
stated in a general and more formal manner. It enables to envisage 
several other possible ways of measuring the cycle-effects and points at 
further directions of research. 
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1. INTRODUCTION: MATHEMATICAL BACKGROUND 

Let G be a graph representing the carbon–atom skeleton of a polycyclic conjugated π-
Electron system [7,9,21,34]. In what follows, we refer to G as to a molecular graph. Let G 
possess a total of t = t(G) cycles, and let these cycles be denoted by Z1, Z2, ..., Zt. 

In order to avoid any misunderstanding, in Fig 1 are indicated all the cycles 
contained in the molecular graph of triphenylene GTP. Thus, although GTP is classified 
among tetracyclic graphs (i.e., GTP has 4 independent cycles), it possesses a total of 11 
cycles, t(GTP ) = 11. 

In theoretical chemistry, it has been firmly established that the cycles in conjugated 
molecules have a profound influence on their physical and chemical properties, especially 
on those that are referred to as “aromaticity” and “local aromaticity” [27,6,30,28,13]. 

The considerations that follow are intimately related with the Sachs theorem and 
Its role in quantum chemistry. This theorem was published in its final form by Horst Sachs 
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in 1964 [29], but remained fully unknown to the chemical community until the publication 
of the paper in 1972 [8]. Details of the Sachs theorem can be found in scores of books and 
review articles, for instance in [23,32,31,9,34,21,7,16]; for historical details see 
[11,12,35]. 

 
Figure 1. The molecular graph G TP of triphenylene and the cycles contained in it. 

 
Let G be a molecular graph and ϕ(G,λ) its characteristic polynomial. Let G has n 

vertices, which means that ϕ(G,λ) is a monic polynomial of degree n. 
A Sachs graph S is any graph whose components are cycles and/or 2-vertex 

Complete graphs. Denote by n(S), p(S), and c(S) the number of vertices, number of 
components, and number of cyclic components, respectively of the Sachs graph S. Denote 
by S(G) the set of all Sachs graphs that are as subgraphs contained in the graph G. Then 
the Sachs theorem reads, 

,ܩ)߶ (ߣ = ௡ߣ + ∑ (−1)௣(ௌ)
ௌ∈ௌ(ீ) 2௖(ௌ)ߣ௡ି௡(ௌ)                   (1) 

Important for the present consideration is that the Sachs theorem relates the 
Characteristic polynomial with the structure of the underlying graph. Furthermore, it 
clearly and explicitly shows how the characteristic polynomial depends on the cycles 
Contained in the graph. 
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By solving the equation ϕ(G,λ) = 0, one obtains the eigenvalues of the graphs G, 
denoted by λ1 ≥ λ2 ≥ ··· ≥ λn . Within the framework of the tight-binding Hüuckel 
molecular orbital (HMO) approximation, the total π-electron energy of the underlying 
conjugated molecule can then be calculated as [9, 21] 

(ܩ)ܧ = ∑ ߱௜ߣ௜௡
௜ୀଵ                                                                   (2) 

where ωi is the occupation number of the i-th molecular orbital, ωi ∈ {0,1,2}. Thus, the 
Sachs theorem in an implicit manner reveals how the total π-electron energy depends on 
the cycles contained in the molecular graph. 

In order to measure the effect of cycles, a quasi-energy E(G,ref) needs to be 
constructed in an analogous manner as E(G), using not the zeros of the characteristic 
polynomial, but the zeros of a suitably constructed “reference polynomial”. Then the 
difference (ܩ)ܧ − ,ܩ)ܧ  ,provides a desired measure of the respective energy-effect (݂݁ݎ
and can be directly related with the physical and chemical properties of the underlying 
conjugated π-electron systems. 
 
2. MODELING THE ENERGY−EFFECTS 

Let Z1, Z2, ..., Zt be the cycles contained in the molecular graph G. For i = 1,2,...,t, 
associate a variable gi to the cycle Zi . Let g = (g1 ,g2 ,...,gt ) be a t-dimensional vector. If 
g1 = g2 = ··· = gt = 0, then we write g = 0. If g1 = g2 = ··· = gt = 1, then g = 1. By ei we 
denote the g-vector in which all components are equal to zero, except the i-th component, 
which is equal to unity. Thus, ݃ = ∑ ݃௜݁௜௡

௜ୀଵ .  
Bearing in mind Eq. (1), we define an auxiliary polynomial 

,݃,ܩ)߶ (ߣ = ௡ߣ + ෍ (−1)௣(ௌ)

ௌ∈ௌ(ீ)

2௖(ௌ)ܼ(ܵ) ߣ௡ି௡(ௌ)  

where Z(S) is the product of gi-values of all cycles contained in the Sachs graph S. If the 
Sachs graph S is acyclic, then Z(S) = 1. 

It is evident that ϕ(G,1,λ) ≡ ϕ(G,λ), i.e., ϕ(G,1,λ) coincides with the ordinary 
characteristic polynomial. In addition, ϕ(G,0,λ) is equal to the matching polynomial, 
whose theory has been studied in due detail [5,15]. 

By solving the equation ϕ(G,g,λ) = 0, one obtains the quasi-eigenvalues λ1(g), 
λ2(g), ..., λn(g). Based on them, it is possible to compute a quasi-energy E(G,g) in the same 
manner as the total π-electron energy E(G) is calculated from the ordinary graph 
eigenvalues (as specified in the preceding section). Then, in particular, E(G,1) coincides 
with the ordinary total π-electron energy E(G), Eq. (2). 

The quasi-energy E(G,g) has to be understood as a total-π-electron-energy-like 
quantity, in which the parameter gi controls the effect of the i-th cycle contained in the 
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molecular graph. If gi = 1, then the effect of this cycle of total π-electron energy has the 
usual, normal value. If gi = 0 then the effect of the i-th cycle is completely neglected. 

Based on this simple observation, by means of the difference E(G,1) − E(G,g), and 
by a pertinent choice of the g-vector, it was possible to extract a variety of chemically 
relevant information contained in the HMO total π-electron energy. In what follows, we 
list a few such cases that earlier have been studied in the chemical literature. In the 
subsequent section, we point out other options that our general Theory makes possible. 
 
2.1. THE TOPOLOGICAL RESONANCE ENERGY  
 
Using the above introduced formalism, the “it topological resonance energy” is defined as 

TRE(G) = E(G,1) − E(G,0)                                 (3) 
It represents the effect on total π-electron energy of all cycles contained in the molecular 
graph G. This idea was first put forward in 1975 by Nenad Trinajstić and two of his 
students [18], and eventually elaborated in 1977, in the papers [33,19]. In the same time 
Aihara arrived at the very same idea [1]. Details and an extensive bibliography of the 
theory and numerous applications of the TRE model can be found in the survey [14], 
whereas a few interesting historical data in Trinastić’s autobiography [35]. 
 
2.2. MODELS OF ENERGY−EFFECT INDIVIDUAL CYCLES 

Whereas TRE represents the simultaneous effect of all cycles of total π-electron energy, an 
analogous reasoning lead to the expression 

(௜ܼ,ܩ)݂݁ = ,ܩ)ܧ 1)− ,ܩ)ܧ 1 − ݁௜)                         (4) 
which would provide a measure of the effect of the individual cycle Zi. This model was 
proposed in 1977, in the paper [4]. The idea came from Gutman, whereas Slobodan 
Bosanac provided the software by means of which the ef-values could be efficiently 
calculated. The first chemical applications of this model were communicated in [17], and 
were followed by many dozens of publications; mathematical details and bibliography can 
be found in the survey [13]. 

In the same year 1977, Aihara introduced an alternative model for measuring the 
energy-effect of individual cycles [2]. In our symbolism, this energy-effect can be 
expressed as 

݁ ஺݂(ܩ,ܼ௜) = ,ܩ)ܧ ݁௜)− ,ܩ)ܧ 0)                                      (5) 
In the case of unicyclic graphs, ݁ ஺݂(ܩ) =  whereas in the case of graphs , (ܩ)݂݁

with more than one cycle, the two ef-values differ. Worth mentioning is that for all graphs 
G and all i = 1,2,...,t, the quasi-eigenvalues λ1(ei), λ2 (ei), ..., λn(ei), i.e., the zeros of the 
polynomial ܩ)ߚ,ܼ௜, (ߣ = ,ܩ)߶ ݁௜,  are all real-valued. This fact was first established on (ߣ
a large number of examples [24,25] and eventually proved for the general case [26].  
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In a later article [3], Aihara himself came to the conclusion that the ef-model, Eq. 
(4), is superior to its ef A -version, Eq. (5). 

Formula (4) can be directly extended to measure the collective energy-effect of a 
pair of cycles Zi, Zj, ݂݁൫ܩ,ܼ௜, ௝ܼ൯ = ,ܩ)ܧ 1)− ,ܩ)ܧ 1 − ݁௜ − ௝݁) of a triplet of cycles Zi 
,Zj, Zk , ݂݁൫ܩ,ܼ௜, ௝ܼ,ܼ௞൯ = ,ܩ)ܧ 1)− ,ܩ)ܧ 1 − ݁௜ − ௝݁ − ݁௞) etc. However, to the present 
author’s best knowledge, these multiple-energy-effects have been considered in just a 
single paper [22]. 
 
3. MORE POSSIBILITIES OF THE GENERAL THEORY 

The choice g = 1−ei in Eq. (4) means that we completely neglect the influence of the cycle 
Zi on the value of the quasi-energy E(G,g). Analogously, the choice g = 0 in Eq. (3) means 
that we completely neglect the influence of all cycles on the value of the quasi-energy 
E(G,g). 

However, we may only partially diminish the effect of cycles (by choosing 0 < gi 
<1). In this case, a resonance energy of the form, 

,ܩ)௔ܧܴܶ (ߝ =
1
ߝ ,ܩ)ܧ] 1) − ,ܩ)ܧ  (1 −  [(1(ߝ

would be conceived, in which case TREa (G,ε) = TRE(G) if ε = 1. For instance, by setting 
ε = 1/2, we would get a kind of “half-way” resonance energy. Anyway, ε could be viewed 
as a variable parameter, whose value could then be optimized (so that TREa best agrees 
with experimentally observed facts). 

Another development beyond the standard TRE model would be to increase the 
effect of cycles above their usual value. The resonance energy obtained in this way would 
be, 

,ܩ)௕ܧܴܶ (ߝ = ଵ
ఌ

,ܩ)ܧ] (1 + −(1(ߝ ,ܩ)ܧ 1)]                                   (7)  
in which case TREb (G,ε) = TRE(G) if ε = −1. It can be shown that 

limఌ→଴ ௔ܧܴܶ ,ܩ) (ߝ = limఌ→଴ ,ܩ)௕ܧܴܶ (ߝ = డா(ீ,௫ଵ)
డ௫

ݔ| = 1                 (8) 
The partial derivative on the right–hand side of (8) was earlier studied in [10,20], where it 
was shown to be equal to the sum of contributions of individual cycles contained in the 
molecular graph G. 

Analogous extensions could be done also with the individual energy-effect ef(G), 
Eq. (4). Thus, one might consider 

݁ ௔݂(ܩ,ܼ௜, (ߝ = ଵ
ఌ

,ܩ)ܧ] 1)− ,ܩ)ܧ 1 −  ௜)]                            (9)݁ߝ
or 

݁ ௕݂(ܩ,ܼ௜, (ߝ = ଵ
ఌ

,ܩ)ܧ] 1 + (௜݁ߝ − ,ܩ)ܧ 1)]                           (10) 
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which evidently become equal to ef(G,Zi) for ε = +1 and ε = −1, respectively. In 
connection with this, it can be shown that, 

limఌ→଴ ݁ ௔݂(ܩ,ܼ௜, (ߝ = limఌ→଴ ݁ ௕݂(ܩ,ܼ௜, (ߝ = డா(ீ,௚)
డ௚೔

|݃ = 1. 

 
4. CONCLUDING REMARKS 

The fact is that the variable-parameter energy-effects defined via Eqs. (6) , (7), (9) , (10), 
and similar have never been studied in theoretical chemistry. Their “ordinary” versions, 
Eqs. (3)–(5), were put forward in the 1970s, when the interest for HMO-based aromaticity 
criteria might have been at a maximum. In the meantime, the usage of HMO-based 
theories gradually lost their attractiveness, and nowadays it is unlikely that the models 
mentioned in the preceding section will be further elaborated and attempted to find 
chemical applications. Therefore, the present paper should be considered as a summary of 
what the research group of Nenad Trinajstić achieved in the study of cycle-effects in 
polycyclic conjugated molecules, and what could have had achieved, but did not. Sincere 
congratulations and best wishes to N.T.’s 80th birthday. 
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