Applications of Some Graph Operations in Computing Some Invariants of Chemical Graphs

M. TAVAKOLI* AND F. RAHBARNIA

Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

(Received October 20, 2013; Accepted October 29, 2013)

ABSTRACT

In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.

Keywords: Topological index; graph operation; distance–balanced graph; chemical graph.

1. INTRODUCTION

Throughout this paper all graphs considered are finite, simple and connected. The distance $d_G(u,v)$ between the vertices u and v of a graph G is equal to the length of a shortest path that connects u and v. Suppose G is a graph with vertex and edge sets $V = V(G)$ and $E = E(G)$, respectively. For an edge $e = ab$ of G, let $n_a(e)$ be the number of vertices closer to a than to b. In other words, $n_a^G(e) = |\{u \in V(G) | d(u, a) < d(u, b)\}|$. In addition, let $n_b(e)$ be the number of vertices with equal distances to a and b, i.e., $n_0^G(e) = |\{u \in V(G) | d(u, a) = d(u, b)\}|$. We also denote the number of edges of G whose distance to the vertex a is smaller than the distance to the vertex b by $m_a(e)$. The Szeged, edge Szeged, revised Szeged, vertex–edge Szeged, vertex Padmakar–Ivan and edge Padmakar–Ivan indices of the graph G are defined as:

\[
\begin{align*}
S_{zv}(G) &= \sum_{e=uv \in E(G)} n_u(e)n_v(e) \quad \text{(see[1])}, \\
S_{ze}(G) &= \sum_{e=uv \in E(G)} m_u(e)m_v(e) \quad \text{(see[2])}, \\
S_{ze*}(G) &= \sum_{e=uv \in E(G)} (n_u(e)+\frac{n_0(e)}{2})(n_v(e)+\frac{n_0(e)}{2}) \quad \text{(see[3])},
\end{align*}
\]

* Corresponding author (Email: Mostafa.tavakoli@stu-mail.um.ac.ir).
A graph \(G \) with a specified vertex subset \(U \subseteq V(G) \) is denoted by \(G(U) \). Suppose \(G \) and \(H \) are graphs and \(U \subseteq V(G) \). The generalized hierarchical product, denoted by \(G(U) \cap H \), is the graph with vertex set \(V(G) \times V(H) \) and two vertices \((g, h)\) and \((g', h')\) are adjacent if and only if \(g = g' \in U \) and \(hh' \in E(H) \) or, \(gg' \in E(G) \) and \(h = h' \). This graph operation has been introduced by Barrière et al. [7,8] and it has some applications in computer science. To generalize this graph operation to \(n \) graphs, assume that \(G_i = (V_i, E_i) \) is a graph with vertex set \(V_i \), \(1 \leq i \leq N \), having a distinguished or root vertex \(0 \). The hierarchical product \(H = G_N \cap \ldots \cap G_2 \cap G_1 \) is the graph with vertices the \(N \)-tuples \(x_N, \ldots, x_3, x_2, x_1 \), \(x_i \in V_i \), and edges defined by the following adjacencies:

\[
\begin{align*}
 x_N \ldots x_3 x_2 x_1 & \quad \text{if} \quad x_1 y_1 \in E(G_1) , \\
x_N \ldots x_3 y_2 x_1 & \quad \text{if} \quad x_2 y_2 \in E(G_2) \quad \text{and} \quad x_1 = 0 , \\
x_N \ldots x_3 x_2 y_1 & \quad \text{if} \quad x_3 y_3 \in E(G_3) \quad \text{and} \quad x_1 = x_2 = 0 , \\
\vdots & \quad \vdots \quad \vdots \\
x_N \ldots y_N x_2 y_1 & \quad \text{if} \quad x_N y_N \in E(G_N) \quad \text{and} \quad x_1 = x_2 = \ldots = x_{N-1} = 0 .
\end{align*}
\]

We encourage the reader to consult [9] for the mathematical properties of the hierarchical product of graphs.

The Cartesian product \(G \times H \) of the graphs \(G \) and \(H \) has the vertex set \(V(G \times H) = V(G) \times V(H) \) and \((a, x)(b, y)\) is an edge of \(G \times H \) if \(a = b \) and \(xy \in E(H) \), or \(ab \in E(G) \) and \(x = y \), see[10].

The disjunction \(G \lor H \) of graphs \(G \) and \(H \) is the graph with vertex set \(V(G) \times V(H) \) such that \((u_1, v_1)\) is adjacent to \((u_2, v_2)\) whenever \(u_1 u_2 \in E(G) \) or \(v_1 v_2 \in E(H) \) [10].

Let \(G = (V, E) \) be a simple graph of order \(n = |V| \). Given \(u, v \in V \), \(u \sim v \) means that \(u \) and \(v \) are adjacent vertices. Given a set of vertices \(S = \{v_1, v_2, \ldots, v_k\} \) of a connected graph \(G \), the metric representation of a vertex \(v \in V \) with respect to \(S \) is the vector \(r(v|S) = (d_G(v, v_1), d_G(v, v_2), \ldots, d_G(v, v_k)) \). We say that \(S \) is a resolving set for \(G \) if for every pair of distinct vertices \(u, v \in V \), \(r(u|S) \neq r(v|S) \). The metric dimension of \(G \) is the minimum cardinality of any resolving set for \(G \), and it is denoted by \(\text{dim}(G) \).
Now, we present some certain types of graphs that play prominent roles in this work. A graph G is called nontrivial if $|V(G)| > 1$. The n-cube Q_n ($n \geq 1$) is the graph whose vertex set is the set of all n-tuples of 0s and 1s, where two n-tuples are adjacent if they differ in precisely one coordinate. A tree is an undirected graph in which any two vertices are connected by exactly one simple path. In other words, any connected graph without cycles is a tree. A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with vertices of degree k is called a k–regular graph or regular graph of degree k. Note that the path graph, the complete and the cycle of order n are denoted by P_n, K_n and C_n, respectively.

2. **Main Results**

In what follows, we assume that $\prod_j f_i = 1$ and $\sum_j f_i = 0$ for each $i, j \in \{0, 1, 2, \ldots\}$, that $i - j = 1$. Furthermore, let $\prod_i f_i = \sum_i f_i = 0$, for every $i, j \in \{0, 1, 2, \ldots\}$, such that $i - j > 1$. For a rooted graph G with root vertex r, we will use $\Gamma_v(G)$ to denote the sum of $n^{G}_{v}(e)$ over all edges $e = uv$ of G that $d_G(u, r) < d_G(v, r)$ and $\Gamma^{c}_v(G)$ to denote the sum of $n^{G}_{v}(e)$ over all edges $e = uv$ of G that $d_G(u, r) < d_G(v, r)$. Moreover, $\Gamma^c_\Gamma(G)$ denotes the sum of $m^{G}_{v}(e)$ over all edges $e = uv$ of G that $d_G(u, r) < d_G(v, r)$ and $\Gamma^{c}_e(G)$ denotes the sum of $m^{G}_{v}(e)$ over all edges $e = uv$ of G that $d_G(u, r) < d_G(v, r)$. In other words,

$$\Gamma_\Gamma(G) = \sum_{uv \in E(G), d_G(u, r) < d_G(v, r)} n^{G}_{v}(uv),$$

$$\Gamma^{c}_v(G) = \sum_{uv \in E(G), d_G(u, r) < d_G(v, r)} m^{G}_{v}(uv),$$

$$\Gamma_e(G) = \sum_{uv \in E(G), d_G(u, r) < d_G(v, r)} m^{G}_{v}(uv),$$

$$\Gamma^{c}_e(G) = \sum_{uv \in E(G), d_G(u, r) < d_G(v, r)} m^{G}_{v}(uv).$$

If the vertex r lies on no odd cycle of G, then one can easily see that

$$PL_\Gamma(G) = \Gamma_\Gamma(G) + \Gamma^{c}_v(G) \quad \text{and} \quad PL_e(G) = \Gamma_e(G) + \Gamma^{c}_e(G).$$

Also, for a sequence of graphs, G_1, G_2, ..., G_n, we set $|V_{i,j}| = \prod_{k=1}^{j} |V(G_k)|$ and $|V_{i,j}| = \prod_{k=i, k \neq j}^{j} |V(G_k)|$. To say the next result, we have to present some notation. For a connected rooted graph G with root vertex r, let $N^{G}(r)$ be the set of vertices of G with the property that $u \in N^{G}(r)$ if there exists $v \neq u$ in $V(G)$ such that $d_G(u, r) = d_G(v, r)$. We say that
$S(N^G(r)) \subseteq V(G)$ is a resolving set for $N_G(r)$ if for each pair of distinct vertices $u, v \in N^G(r)$, $r(u|S(N^G(r))) \neq r(v|S(N^G(r)))$. Therefore, it is clear that $\dim(N^G(r)) \leq \dim(G)$. The metric dimension of $N^G(r)$ is the minimum cardinality of any resolving set for $N^G(r)$, and it is denoted by $\dim(N^G(r))$.

Theorem 1. [9]. Suppose G_1, G_2, \ldots, G_n are nontrivial connected rooted graphs with root vertices r_1, \ldots, r_n, respectively. Then

$$\dim(G_n \cap \ldots \cap G_2 \cap G_1) = \begin{cases} \prod_{j=2}^{n} |V(G_j)| \dim(N^{G_j}(r_j)) & \text{if } G_j \not\cong P_n \\ \prod_{j=3}^{n} |V(G_j)| \dim(N^{G_j \cup G_j}(r_2)) & \text{if } G_j \cong P_n \end{cases}$$

![Diagram](image-url)

Figure 1: Irregular Dicentric $IDD_{5(2,1,3,1,2)}$ Dendrimer.

Example 2. Let $IDD_r(p_1,\ldots,p_r)$ be the graph of the irregular dicentric dendrimer that $p_i > 1$, $i=1,\ldots, r$, see [11] for more information. Then $IDD_{r}(p_1,\ldots,p_r) = P_2 \cap H$, where H is a tree of progressive degrees p_i, $i=1,\ldots,r$, respectively, and generation r (see Figure 1). One can see that $\dim(N^H(r)) = \prod_{i=1}^{r-1} p_i(p_r - 1)$. Therefore, by Theorem 1, we have:

$$\dim(IDD_{r}(p_1,\ldots,p_r)) = |V(P_2)| \dim(N^H(r)) = 2 \prod_{i=1}^{r-1} p_i(p_r - 1).$$

A graph G is said to be (vertex) distance-balanced, if $n_a^G(e) = n_b^G(e)$, for each edge $e = ab \in E(G)$, see [12, 13] for details. These graphs first studied by Handa [14] who considered distance-balanced partial cubes. In [15], Jerebic et al. studied distance-balanced...
graphs in the framework of various kinds of graph products. After that, in [16], the present authors introduced the concept of edge distance-balanced graphs. Such a graph G has this property that $m^G_a(e) = m^G_b(e)$ holds for each edge $e = ab \in E(G)$.

Proposition 3. [13]. Let G and H be arbitrary, nontrivial and connected graphs. Then $G \vee H$ is distance-balanced if and only if G and H are regular graphs.

Example 4. Consider G', see Figure 2, that was constructed in [17] as an example of a bipartite regular graph that is not distance-balanced. It would be interesting to know that we can produce a distance-balanced graph by two graphs which are not distance-balanced. Let G is arbitrary, nontrivial and connected regular graph then by the above proposition, $G' \vee G$ is distance-balanced (note that G can be not distance-balanced).

Theorem 5. [16]. Let G and H be edge and vertex distance-balanced graphs. Then $G \times H$ is edge distance-balanced graphs.

Example 6. Consider the N-cube Q_N. It is well-known fact that it can be written in the form $Q_N = \times_{i=1}^N K_2$. On the other hand, K_2 is edge and vertex distance-balanced graph. So, by the above theorem, Q_N is edge distance-balanced graph.

Theorem 7. [18]. Suppose $G_1, G_2, ..., G_n$ are connected rooted graphs with root vertices $r_1, ..., r_n$, respectively. Then

$$S_{z_i}(G_n \wedge ... \wedge G_2 \wedge G_1) = \sum_{i=1}^n v_{i+1,n} \| v_{i,i-1} \|^2 S_{z_i}(G_i)$$
\begin{align*}
&\quad + \sum_{i=1}^{n-l} \left(\sum_{j=i+1}^{n} |V(G_j)| - 1 \right) |V_{i,j-1}| \right) \left| V_{i,n} \right| \Gamma_v(G_i). \\
\textbf{Corollary 8.} \ [18]. \ Suppose \ G_1, \ G_2, \ ... , \ G_n \ are \ connected, \ rooted \ and \ distance-balanced \ graphs \ with \ root \ vertices \ r_1, \ ... , \ r_n, \ respectively, \ such \ that \ r_i \ lies \ on \ no \ odd \ cycle \ of \ G_i, \ i = 1, 2, \ldots, n. \ Then \\
S_{\varepsilon}(G_n \cap \ldots \cap G_2 \cap G_1) = \sum_{i=1}^{n} |V_{i+1,n}| \left| V_{i,i-1} \right| S_{\varepsilon}(G_i) \\
&\quad + \frac{1}{2} \sum_{i=1}^{n-l} \left(\sum_{j=i+1}^{n} |V(G_j)| - 1 \right) |V_{i,j-1}| \right) \left| V_{i,n} \right| \Gamma_v(G_i). \\
\textbf{Theorem 9.} \ [18]. \ Suppose \ G_1, \ G_2, \ ... , \ G_n \ are \ connected \ rooted \ graphs \ with \ root \ vertices \ r_1, \ ... , \ r_n, \ respectively. \ Then \\
S_{\varepsilon}(G_n \cap \ldots \cap G_2 \cap G_1) = \sum_{i=1}^{n} |V_{i+1,n}| \left| S_{\varepsilon}(G_i) \right| \\
&\quad + \sum_{i=1}^{n} |V_{i+1,n}| \left(\sum_{j=1}^{i-l} |E(G_j)| \left| V_{j+1,i-1} \right| \right) S_{\varepsilon}(G_i) \\
&\quad + 2 \sum_{i=1}^{n} |V_{i+1,n}| \left(\sum_{j=1}^{i-l} |E(G_j)| \left| V_{j+1,i-1} \right| \right) S_{\varepsilon}(G_i) \\
&\quad + \sum_{i=1}^{n} |V_{i+1,n}| \left(\Gamma_e(G_i) + \Gamma_v(G_i) \sum_{j=1}^{i-l} |E(G_j)| \left| V_{j+1,i-1} \right| \right) \\
&\quad + \sum_{j=i+1}^{n} \left(|V(G_j)| - 1 \sum_{k=i}^{j-l} |E(G_k)| \left| V_{k+1,j-1} \right| + |E(G_j)| \right). \\
\textbf{Corollary 10.} \ [18]. \ Suppose \ G_1, \ G_2, \ ... , \ G_n \ are \ connected, \ rooted, \ distance-balanced \ and \ edge \ distance-balanced \ graphs \ with \ root \ vertices \ r_1, \ r_2, \ ... , \ r_n, \ respectively, \ such \ that \ r_i \ lies \ on \ no \ odd \ cycle \ of \ G_i, \ i = 1, 2, \ldots, n. \ Then \\
S_{\varepsilon}(G_n \cap \ldots \cap G_2 \cap G_1) = \sum_{i=1}^{n} |V_{i+1,n}| \left| S_{\varepsilon}(G_i) \right|
+ \sum_{i=1}^{n} V_{i+1,n} \left(\sum_{j=1}^{i-1} |E(G_j)| \mid V_{j+1,j-1} \right) - \sum_{i=1}^{n} |V_{i+1,n}| \mid V_{i+1,i-1} \mid |V(G_i)| |E(G_i)| + \sum_{i=1}^{n} \frac{|V_{i+1,n}|}{4} \left(\sum_{j=i+1}^{n} (|V(G_j)| \mid V_{j+1,j-1}^2) \right) N_i + \sum_{i=1}^{n} \frac{|V_{i+1,n}|}{2} \left(\sum_{j=i+1}^{n} (|V(G_j)| \mid V_{j+1,j-1}^2) \right) \pi_v(G_i).

\textbf{Theorem 11.} [18]. Suppose \(G_1, G_2, \ldots, G_n \) are connected rooted graphs with root vertices \(r_1, r_2, \ldots, r_n \), respectively. Then

\[S_{z_{v}}(G_n \sqcap \ldots \sqcap G_2 \sqcap G_1) = \sum_{i=1}^{n} |V_i| |V_{i+1,n}| \mid V_{i+1,i-1} \mid S_{z_{v}}(G_i) \]

\[+ \sum_{i=1}^{n} \frac{|V_{i+1,n}|}{2} \left(\sum_{j=i+1}^{n} (|V(G_j)| \mid V_{j+1,j-1}^2) \right) |V(G_i)| |E(G_i)| + \sum_{i=1}^{n} \frac{|V_{i+1,n}|}{4} \left(\sum_{j=i+1}^{n} (|V(G_j)| \mid V_{j+1,j-1}^2) \right) N_i + \sum_{i=1}^{n} \frac{|V_{i+1,n}|}{2} \left(\sum_{j=i+1}^{n} (|V(G_j)| \mid V_{j+1,j-1}^2) \right) \pi_v(G_i) \]

where \(N_i = \{|uv \in E(G_i) \mid d_{G_i}(u, r_i) = d_{G_i}(v, r_i)\}|. \)

\textbf{Corollary 12.} [18]. Suppose \(G_1, G_2, \ldots, G_n \) are connected, rooted, bipartite and distance-balanced graphs with root vertices \(r_1, r_2, \ldots, r_n \), respectively. Then

\[S_{z_{v}}(G_n \sqcap \ldots \sqcap G_2 \sqcap G_1) = \sum_{i=1}^{n} |V_i| |V_{i+1,n}| \mid V_{i+1,i-1} \mid S_{z_{v}}(G_i) \]

\[+ \sum_{i=1}^{n} \frac{|V_{i+1,n}|}{2} \left(\sum_{j=i+1}^{n} (|V(G_j)| \mid V_{j+1,j-1}^2) \right) \pi_v(G_i). \]
Example 13. Octanitrocubane is the most powerful chemical explosive with formula $C_8(NO_2)_8$, Figure 3. Let H be the molecular graph of this molecule. Then obviously $H = Q_3 \ast P_2$. On the other hand, one can easily see that $Sz_v(Q_3) = Sz_e(Q_3) = Sz_{ev}(Q_3) = 192$, $\Gamma_v(P_2) = 1$ and $\Gamma_e(P_2) = 0$ and so, by the above results, we have:

$$Sz_v(H) = Sz_v(Q_3 \ast P_2) = 888, Sz_e(H) = Sz_e(Q_3 \ast P_2) = 768, Sz_{ev}(H) = Sz_{ev}(Q_3 \ast P_2) = 888.$$

Example 14. Let $\{G_i\}_{i=1}^d$ be a set of finite pairwise disjoint graphs with $v_i \in V(G_i)$. The bridge–cycle graph $BC(G_1, G_2, ..., G_d) = BC(G_1, G_2, ..., G_d; v_1, v_2, ..., v_d)$ of $\{G_i\}_{i=1}^d$ with respect to the vertices $\{v_i\}_{i=1}^d$ is the graph obtained from the graphs $G_1, ..., G_d$ by connecting the vertices v_i and v_{i+1} by an edge for all $i = 1, 2, ..., d-1$ and connecting the vertices v_1 and v_d by an edge, see Figure 4. Suppose that $G_1 = ... = G_d = G$. Then we have $BC(G_1, G_2, ..., G_d) \cong C_d \cap G$. On the other hand, It is not so difficult to check that

$$Sz_v(C_n) = \begin{cases} \frac{n^3}{4} & 2 \nmid n \\
^2(n-1) \quad 2 \mid n
\end{cases}.$$

Therefore, if $2 \mid n$, by Theorem 1, we have $Sz_v(C_n \cap G) = n$.

Figure 3: The Molecular Graph of Octanitrocubane.

Figure 4: The Bridge–Cycle Graph.
\[Sz_v(G) + \frac{n^3}{4} |V(G)|^2 + n(n-1)|V(G)|\Gamma_v(G) \] and if \(2 \mid n \), then \(Sz_v(C_n \cap G) = n \ Sz_v(G) + \frac{n(n-1)^2}{4} |V(G)|^2 + n(n-1)|V(G)|\Gamma_v(G) \).

By replacing \(G \) with \(P_m \) (such that \(r \) is a pendant vertex of \(P_m \)) in the above relations, we obtain \(Sz_v \) of \(\text{Sun}_n, m-1 \), see [19], as follow:

\[
Sz_v(\text{Sun}_{n,m-1}) = \begin{cases}
\frac{1}{4} n^3 m^2 + \frac{1}{2} n^2 m^3 - \frac{1}{2} n^2 m^2 - \frac{1}{3} nm^3 + \frac{1}{2} nm^2 - \frac{1}{6} nm & 2 \mid n \\
\frac{1}{4} n^3 m^2 - n^2 m^2 + \frac{3}{4} nm^2 + \frac{1}{2} n^2 m^3 - \frac{1}{3} nm^3 - \frac{1}{6} nm & 2 \nmid n
\end{cases}
\]

ACKNOWLEDGMENTS. This research was supported by a grant from Ferdowsi University of Mashhad; (No. MA91292RAH).

REFERENCES