• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Iranian Journal of Mathematical Chemistry
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2019)
Volume Volume 9 (2018)
Volume Volume 8 (2017)
Volume Volume 7 (2016)
Volume Volume 6 (2015)
Volume Volume 5 (2014)
Volume Volume 4 (2013)
Issue Issue 2
Issue Issue 1
Volume Volume 3 (2012)
Volume Volume 2 (2011)
Volume Volume 1 (2010)
GHORBANI, M., BANI-ASADI, E. (2013). Counting the number of spanning trees of graphs. Iranian Journal of Mathematical Chemistry, 4(1), 111-121. doi: 10.22052/ijmc.2013.5285
M. GHORBANI; E. BANI-ASADI. "Counting the number of spanning trees of graphs". Iranian Journal of Mathematical Chemistry, 4, 1, 2013, 111-121. doi: 10.22052/ijmc.2013.5285
GHORBANI, M., BANI-ASADI, E. (2013). 'Counting the number of spanning trees of graphs', Iranian Journal of Mathematical Chemistry, 4(1), pp. 111-121. doi: 10.22052/ijmc.2013.5285
GHORBANI, M., BANI-ASADI, E. Counting the number of spanning trees of graphs. Iranian Journal of Mathematical Chemistry, 2013; 4(1): 111-121. doi: 10.22052/ijmc.2013.5285

Counting the number of spanning trees of graphs

Article 8, Volume 4, Issue 1, Winter 2013, Page 111-121  XML PDF (1.2 MB)
Document Type: Research Paper
DOI: 10.22052/ijmc.2013.5285
Authors
M. GHORBANI1; E. BANI-ASADI2
1Shahid Rajaee Teacher Training University,I. R. Iran
2Shahid Rajaee Teacher Training University, I. R. Iran
Abstract
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
Keywords
Spanning tree; Laplacian eigenvalue; Fullerene
Statistics
Article View: 1,150
PDF Download: 751
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Creative Commons
Journal Management System. Designed by sinaweb.