• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Iranian Journal of Mathematical Chemistry
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 10 (2019)
Volume Volume 9 (2018)
Volume Volume 8 (2017)
Volume Volume 7 (2016)
Volume Volume 6 (2015)
Volume Volume 5 (2014)
Volume Volume 4 (2013)
Issue Issue 2
Issue Issue 1
Volume Volume 3 (2012)
Volume Volume 2 (2011)
Volume Volume 1 (2010)
YONG WANG, H., QIN, J., GUTMAN, I. (2013). Wiener numbers of random pentagonal chains. Iranian Journal of Mathematical Chemistry, 4(1), 59-76. doi: 10.22052/ijmc.2013.5282
H. YONG WANG; J. QIN; I. GUTMAN. "Wiener numbers of random pentagonal chains". Iranian Journal of Mathematical Chemistry, 4, 1, 2013, 59-76. doi: 10.22052/ijmc.2013.5282
YONG WANG, H., QIN, J., GUTMAN, I. (2013). 'Wiener numbers of random pentagonal chains', Iranian Journal of Mathematical Chemistry, 4(1), pp. 59-76. doi: 10.22052/ijmc.2013.5282
YONG WANG, H., QIN, J., GUTMAN, I. Wiener numbers of random pentagonal chains. Iranian Journal of Mathematical Chemistry, 2013; 4(1): 59-76. doi: 10.22052/ijmc.2013.5282

Wiener numbers of random pentagonal chains

Article 5, Volume 4, Issue 1, Winter 2013, Page 59-76  XML PDF (316.89 K)
Document Type: Research Paper
DOI: 10.22052/ijmc.2013.5282
Authors
H. YONG WANG1; J. QIN1; I. GUTMAN2
1University of South China, P. R. China
2University of Kragujevac, Serbia
Abstract
The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.
Keywords
Wiener index; Pentagonal chain
Statistics
Article View: 1,173
PDF Download: 789
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Creative Commons
Journal Management System. Designed by sinaweb.