YONG WANG, H., QIN, J., GUTMAN, I. (2013). Wiener numbers of random pentagonal chains. Iranian Journal of Mathematical Chemistry, 4(1), 59-76. doi: 10.22052/ijmc.2013.5282
H. YONG WANG; J. QIN; I. GUTMAN. "Wiener numbers of random pentagonal chains". Iranian Journal of Mathematical Chemistry, 4, 1, 2013, 59-76. doi: 10.22052/ijmc.2013.5282
YONG WANG, H., QIN, J., GUTMAN, I. (2013). 'Wiener numbers of random pentagonal chains', Iranian Journal of Mathematical Chemistry, 4(1), pp. 59-76. doi: 10.22052/ijmc.2013.5282
YONG WANG, H., QIN, J., GUTMAN, I. Wiener numbers of random pentagonal chains. Iranian Journal of Mathematical Chemistry, 2013; 4(1): 59-76. doi: 10.22052/ijmc.2013.5282
The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.