A Note on atom bond connectivity index

SOMAIHEH HEIDARI RAD* AND ALI KHAKI

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran

(Received April 12, 2011)

ABSTRACT

The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as $\text{ABC}(G) = \sum_{uv \in E} \sqrt{d_G(u) + d_G(v) - 2}/d_G(u)d_G(v)$, where $d_G(u)$ denotes degree of vertex u. In this paper we present some bounds of this new topological index.

Keywords: Topological index, ABC Index, nanotube, nanotori.

1. INTRODUCTION

A graph is a collection of points and lines connecting a subset of them. The points and lines of a graph also called vertices and edges of the graph, respectively. If e is an edge of G, connecting the vertices u and v, then we write $e = uv$ and say "u and v are adjacent". A connected graph is a graph such that there is a path between all pairs of vertices. A simple graph is an unweighted, undirected graph without loops or multiple edges. A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. Note that hydrogen atoms are often omitted.

Molecular descriptors play a significant role in chemistry, pharmacology, etc. Among them, topological indices have a prominent place [1]. One of the best known and widely used is the connectivity index, χ, introduced in 1975 by Milan Randić [2], who has

*Corresponding author.
shown this index to reflect molecular branching. Recently Estrada et al. [3, 4, 5] introduced atom-bond connectivity \((ABC)\) index, which it has been applied up until now to study the stability of alkanes and the strain energy of cyclo-alkanes. This index is defined as follows:

\[
ABC(G) = \sum_{e = uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v) - 2}{d_G(u)d_G(v)}},
\]

where \(d_G(u)\) stands for the degree of vertex \(u\).

Recently, Graovac and Ghorbani defined a new version of the atom-bond connectivity index namely the second atom-bond connectivity index:

\[
ABC_2(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_un_v}},
\]

Some upper and lower bounds for the \(ABC_2\) index of general graphs have been given in [6]. The goal of this paper is to study the properties of \(ABC\) and \(ABC_2\) indices. Our notation is standard and mainly taken from standard books of chemical graph theory [7]. All graphs considered in this paper are finite, undirected, simple and connected. One can see the references [8–17], for more details about topological indices.

2. **Main Results and Discussion**

In this section, we present some properties of atom bond connectivity indices. We refer the readers to references [18, 19].

The first Zagreb index is defined as \(M_1(G) = \sum_{uv \in E} d_G(u) + d_G(v)\), where \(d_G(u)\) denotes the degree of vertex \(u\). The modified second Zagreb index \(M_2^*(G)\) is equal to the sum of the products of the reciprocal of the degrees of pairs of adjacent vertices of the underlying molecular graph \(G\), that is,

\[
M_2^*(G) = \sum_{uv \in E} \frac{1}{d_G(u)d_G(v)}.
\]
Theorem 1 ([18]). Let \(G \) be a connected graph with \(n \) vertices, \(p \) pendent vertices, \(m \) edges, maximal degree \(\Delta \), and minimal non-pendent vertex degree \(\delta_1 \). Let \(M_1 \) and \(M'_2 \) be the first and modified second Zagreb indices of \(G \). Then
\[
ABC(G) \leq p\sqrt{1 - \frac{1}{\Delta}} + \sqrt{[M_1 - 2m - p(\delta_1 - 1)](M'_2 - \frac{p}{\Delta})}.
\]

Corollary 1 ([18]). With the same notation as in Theorem 1, \(ABC(G) \leq \sqrt{(M_1 - 2m)M'_2} \), with equality if and only if \(G \) is regular or bipartite semi–regular.

Theorem 2 ([19, Nordhaus–Gaddum–Type]). Let \(G \) be a simple connected graph of order \(n \) with connected complement \(\overline{G} \). Then
\[
ABC(G) + ABC(\overline{G}) \geq \frac{2^{3/4}n(n-1)\sqrt{k-1}}{k^{3/4}(\sqrt{k} + \sqrt{2})}
\]
where \(k = \max\{\Delta, n - \delta - 1\} \), and where \(\Delta \) and \(\delta \) are the maximal and minimal vertex degrees of \(G \). Moreover, equality in (1) holds if and only if \(G \approx P_4 \).

Theorem 3 ([17]). Let \(G \) be a simple connected graph of order \(n \) with connected complement \(\overline{G} \). Then
\[
ABC(G) + ABC(\overline{G}) \leq (p + \overline{p})\sqrt{\frac{n-3}{n-2} \left(1 - \sqrt{\frac{2}{n-2}}\right)} + \binom{n}{2}\sqrt{\frac{2}{k} - \frac{2}{k^2}}
\]
where \(p, \overline{p} \) and \(\delta_1, \overline{\delta}_1 \) are the number of pendent vertices and minimal non–pendent vertex degrees in \(G \) and \(\overline{G} \), respectively, and \(k = \min\{\delta_1, \overline{\delta}_1\} \). Equality holds in (2) if and only if \(G \approx P_4 \) or \(G \) is an \(r \)-regular graph of order \(2r + 1 \).

Theorem 4. Let \(G \) be a connected graph of order \(n \) with \(m \) edges and \(p \) pendent vertices, then
\[
ABC_2(G) < p\sqrt{\frac{n-2}{n-1}} + (m - p).
\]
Proof. Clearly, we can assume that $n \geq 3$. For each pendent edge uv of graph G we have $n_u = 1$ and $n_v = n - 1$. For each non-pendent edge uv of graph G we have $(n_u + n_v - 2)/n_un_v < 1$. So

$$ABC_2(G) = \sum_{uv \in E} \sqrt{\frac{n_u + n_v - 2}{n_un_v}} = \sum_{uv \in E, d_u = 1} \sqrt{\frac{n_u + n_v - 2}{n_un_v}} + \sum_{uv \in E, d_u, d_v \neq 1} \sqrt{\frac{n_u + n_v - 2}{n_un_v}}$$

$$< p \sqrt{\frac{n-2}{n-1} + m - p}.$$

A simple calculation shows that the Diophantine equation $x + y - 2 = xy$ does not have any integer solution. Then the upper bound does not happen.

Theorem 5. Let T a tree of order $n > 2$ with p pendent vertices. Then

$$ABC_2(T) \leq p \sqrt{\frac{n-2}{n-1} + \frac{\sqrt{2}}{2}(n-p-1)}$$

with equality if and only if $T \cong K_{1,n-1}$ or $T \cong S(2r,s)$ where $n = 2r + s + 1$.

Proof. For any edge uv of trees we have $n_u + n_v = n$. If T be an arbitrary tree with $n \geq 3$ vertex, then ABC_2 is simplified as

$$ABC_2(T) = \sqrt{n-2} \sum_{uv \in T} \frac{1}{\sqrt{n_un_v}}.$$

Now we assume, the tree T have p pendent vertex, then there are exist p edge that $n_u = 1$ and $n_v = n - 1$. For each non-pendent edge uv of tree T, $2 \leq n_u, n_v \leq n-2$ and then $n_un_v \geq 2(n-2)$. This implies that $\sqrt{n_un_v} \geq \sqrt{2(n-2)}$ and so

$$\frac{1}{\sqrt{n_un_v}} \leq \frac{1}{\sqrt{2(n-2)}}.$$

Hence,

$$ABC_2(T) = \sqrt{n-2} \left(\sum_{uv \in T} \frac{1}{\sqrt{n_un_v}} + \sum_{uv \in T, d_u, d_v \neq 1} \frac{1}{\sqrt{n_un_v}} \right)$$

$$\leq \sqrt{n-2} \left(\frac{p}{\sqrt{n-1}} + \frac{n-p-1}{\sqrt{2(n-2)}} \right) = p \sqrt{\frac{n-2}{n-1} + \frac{\sqrt{2}}{2}(n-p-1)}.$$
Suppose now that equality holds in (6), we can consider the following cases:

Case (a): \(p = n - 1 \). From equality in (7), we must have \(n_u = n - 1 \) and \(n_v = 1 \) for each edge \(uv \in E(T) \) and \(n_u \geq n_v \), that is, each edge \(uv \) must be pendent. Since \(T \) is a tree, \(T \cong K_{1,n-1} \).

Case (b): \(p < n - 1 \). In this case the diameter of \(T \) is strictly greater than 2. So there is a neighbor of a pendent vertex, say \(u \), adjacent to some non-pendent vertex \(k \). Since \(n_u = n - 2 \) and \(n_v = 2 \) for each non-pendent edge \(uv \in E(T) \), \(n_u \geq n_v \) we conclude that the degree of each neighbor of a pendent vertex is two and each such vertex is adjacent to vertex \(k \). In addition, also the remaining pendent vertices are adjacent to vertex \(k \). Hence \(T \) is isomorphic to \(T \cong S(2r,s) \) where \(n=2r+s+1 \). Conversely, one can see easily that the equality in (1) holds for star \(K_{1,n-1} \) or \(S(2r,s) \) where \(n = 2r + s + 1 \).

3. **Atom Bond Connectivity Index of Nanostructures**

The goal of this section is computing the \(ABC \) index of a lattice of \(TUC_4C_8[p, q] \), with \(q \) rows and \(p \) columns. Then we compute this topological index for its nanotubes. Finally, we calculate \(ABC \) index of \(TUC_4C_8[p, q] \), see Figure 1.

![Figure 1. 2 – D graph of Lattice \(C_4C_8[4, 4] \).](image)
Example 1. Let P_n be a path with n vertices. It is easy to see that P_n has exactly 2 edges with endpoints degrees 1 and 2. Other edges endpoints are of degree 2.

$$ABC(P_n) = (n-1)\frac{\sqrt{2}}{2}.$$

Example 2. Consider the graph C_n of a cycle with n vertices. Every vertex of a cycle is of degree 2. In other words,

$$ABC(C_n) = n\frac{\sqrt{2}}{2}.$$

Example 3. A star graph with $n + 1$ vertices is denoted by S_n. This graph has a central vertex of degree n and the others are of degree 1. Hence the ABC index is as follows:

$$ABC(S_n) = \sqrt{n(n-1)}.$$

Consider now 2 dimensional graph of lattice $G = TUC_4C_8[p, q]$ depicted in Figure 1. Degrees of edge endpoints of this graph are as follows:

<table>
<thead>
<tr>
<th>Edge Endpoints</th>
<th>[2, 2]</th>
<th>[2, 3]</th>
<th>[3, 3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Edges of This Type</td>
<td>$2p + 2q + 4$</td>
<td>$4p + 4q - 8$</td>
<td>$12pq - 8(p + q) + 4$</td>
</tr>
</tbody>
</table>

On the other hand by summation these values one can see that:

$$ABC(G) = (12pq - 8p - 8q + 4)\frac{2}{3} + (2p + 2q + 4)\frac{\sqrt{2}}{2} + (4p + 4q - 8)\frac{\sqrt{2}}{2}$$

$$= 8pq + \frac{2}{3}(4 - 8p - 8q) + (3p + 3q - 2)\sqrt{2}.$$

Hence, we proved the following theorem:

Theorem 6. Consider 2 - D graph of lattice $G = C_4C_8[p, q]$. Then

$$ABC(G) = 8pq + \frac{2}{3}(4 - 8p - 8q) + (3p + 3q - 2)\sqrt{2}.$$

In continuing consider the graph of nanotube $H = C_4C_8[p, q]$, shown in Figure 2. Similar to Theorem 6, we have the following values for endpoint degrees of vertices of H.

Thus, we can deduce the following formula for ABC index:

$$ABC(H) = \frac{2}{3}(12pq - 8p) + 2p \sqrt{2} + 4p \sqrt{2} = 8pq - \frac{16}{3}p + 3p\sqrt{2}.$$

So, the proof of the following theorem is clear.

Theorem 8. Consider 2 - D graph of nanotube $H = TUC_4C_8[p, q]$. Then

$$ABC(H) = 8pq - \frac{16}{3}p + 3p\sqrt{2}.$$

Theorem 9. Consider the graph of nanotori $K = C_4C_8[p, q]$ in Figure 3. The ABC index of K is $ABC(K) = 8pq$.

Proof. It is easy to see that this graph has $12pq$ edges. On the other hand, K is 3 regular graph and this complete the proof.
Figure 3. 2 – D graph of $K = C_4C_8[4,4]$ Nanotorus.

REFERENCES