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ABSTRACT 

It is necessary to generate the automorphism group of a chemical graph in computer-aided 
structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted 
graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the 
nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, 
one may introduce different weights for distinct nuclei. A.T. Balaban introduced some 
monster graphs and then M. Randic computed complexity indices of them (see A.T. Balaban, 
Rev. Roum. Chim. 18(1973) 841-853 and M. Randic, Croat. Chem. Acta 74(3)(2001) 683-
705). In this paper, we describe a simple method, by means of which it is possible to calculate 
the automorphism group of weighted graphs. 
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1.  INTRODUCTION  

Diamondoid was first discovered and isolated from a Czechoslovakian petroleum in 1933. 
The isolated substance was named adamantane, from the Greek for diamond. This name 
was chosen because it has the same structure as the diamond lattice, highly symmetrical 
and strain free. It is generally accompanied by small amounts of alkylated adamantanes, 2-
methyl, 1-ethyl, and probably 1-methyl, 1, 3-dimethyl and others.  

The carbon skeleton of adamantane comprises a small cage structure. Because of 
this, adamantane and diamondoids in general are commonly known as cage hydrocarbons. 
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In a broader sense they may be described as saturated, polycyclic, cage-like hydrocarbons 
that are present in some reservoir fluids. The diamond-like term arises from the fact that 
their carbon atom structure can be superimposed upon a diamond lattice. The simplest of 
these polycyclic diamondoids is adamantane, followed by its homologues diamantane, tria-, 
tetra-, penta- and hexamantane. The homologous polymantane series has the general 
molecular formula C4n+6H4n+12 where n=1, 2, 3, ...(n=1 for adamantane).  

Graph theory is a branch of discrete mathematics concerned with relation, between 
objects. From the point of the graph theory, all organic molecular structures can be drawn 
as graphs in which atoms and bonds are represented by vertices and edges, respectively. By 
symmetry we mean the automorphism group symmetry of a graph which is a subgroup of 
its vertex permutation group. The symmetry of a graph, also called topological symmetry, 
which need not be the isomorphic to the molecular point group symmetry. However, it dose 
represent the maximal symmetry of its topological structure. 

Randic [1, 2] showed a graph can be depicted in different ways such that its point 
group symmetry or three dimensional preception may differ, but the underlying 
connectivity symmetry is still the same as characterised by the automorphism group of the 
graph which by definition comprises permutations of the vertices of the graph that leave the 
adjacency matrix invariant. However, the molecular symmetry depends on the coordinates 
of the various nuclei which relate directly to their three dimensional geometry.  

Automorphisms have other advantages such as in generation nuclear spin species, 
NMR spectra, nuclear spin statistics in molecular spectroscopy, chirality and chemical 
isomerism. There is also another important application of the automorphism group of 
weighted graphs to fullerenes. The reader is encouraged to consult the leading papers by 
Balasubramanian [3 - 11] and [12 - 17] for background materials as well as basic 
computational techniques. 

Longuet-Higgins [18] showed that a more desirable representation of molecular 
symmetry is to use nuclear permutation and inversion operations resulting in a group called 
Permutation-Inversion (PI) group. Balasubramanian showed that the automorphism group 
of Euclidean graph of a molecule is the Permutation-Inversion group of the molecule.  

A. Ashrafi [19] proved a result that is useful for computing symmetry of molecules. 
Using this result, Lemma 1 and its Corollary, and a MATLAB program that is presented in 
[22] for computing a solution matrix for the automorphism group of Euclidean graphs. 
Finally we use GAP [20, 21] to compute the full automorphism group of some graphs 
which is defined by Balaban [12]. Here, we report on the automorphism group of Structure 
of Higher Diamondoids. Herein, our notation is standard and taken from the standard book 
of graph theory [16, 22-28]. 

 
 
 



On Symmetry of Some Nano Structures                                                                              s31 

 

2.  EXPRIMENTAL 

A simple graph G is called a weighted graph if each edge e is assigned a non-negative 
number w(e), called the weight of e. An automorphism of a weighted graph G = (V, E) is a 
permutation g of V with the following properties: (i) for any u,v in V, g(u) and g(v) are 
adjacent if and only if u is adjacent to v. (ii) for each e in E, w(g(e)) = w(e). The set of all 
automorphism of a weighted graph G, with the operation of composition of permutations, is 
a permutation group on V(G), denoted Aut(G). A non-empty subset X of V(G) is called an 
orbit of G under the action of Aut(G), if there exists x∈X such that X = {α(x) | α∈Aut(G)},. 
G is called vertex transitive or simply transitive, if it has a unique orbit. 

It is a well-known fact that a permutation of the vertices of a graph belongs to its 
automorphism group if it satisfies PtAP = A (1), where Pt is the transpose of permutation 
matrix P and A is the adjacency matrix of the graph under consideration. There are n! 
possible permutation matrices for a graph with n vertices. However, all of them may not 
satisfy the relation (1). Set Aut(G) = {σ1, σ2,···, σm}. The matrix SG = [sij], where sij = σi(j) is 
called a solution matrix for G. Clearly, for computing the automorphism group of G, it is 
enough to calculate a solution matrix for G [23]  

We would like to bring to attention of the spectroscopy community a free software 
package for group theory named GAP [21], which greatly facilitates the following 
calculations. For a given adjacency matrix A, we can write a simple GAP program to 
calculate all the permutation matrices with PtAP = A. Using this program and a similar 
approach as in [22], in the next section, we calculate the automorphism group of two 
weighted graphs. 

 
3. MAIN RESULTS 

The adjacency matrix A = [wij] of a weighted graph is defined as: Aij=wij, if i≠j and vertices 
i and j are connected by an edge with weight wij; Aij=vi, if i=j and the weight of the vertex i 
is vi, and, Aij=0, in the case that i≠j and i, j are not adjacent. Note that vi can be taken as zero 
if all the nuclei are equivalent. Otherwise, one may introduce different weights for nuclei in 
different equivalence classes and the same weight for the nuclei in the same equivalence 
classes. Symmetry operations on a graph are called graph automorphisms. They affect only 
the labels of vertices by permuting them so that the adjacency matrix of the graph remains 
unchanged. The graph symmetry is completely determined by all the automorphisms it has, 
i.e. by specifying all the permutations which leave the adjacency matrix intact. The 
automorphism group of a graph depends only on the connectivity of the graph and does not 
depend on how the graph is represented in three dimensions. That is, a graph, in general, 
can be represented in different ways in three dimensions such that two representations 
could yield different three-dimensional symmetries and yet their automorphism groups are 
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the same since the latter depends only on which vertices are connected in the graph. 
Balasubramanian [7] calculated the automorphism group of the Euclidean graph of benzene 
molecule. By his result, this is a group of order 12. We continue Balasubramanian's result 
to compute the automorphism group of the Euclidean graph of Structure of Higher 
Diamondoids Figure 1. now by using GAP program following we calculate the symmetries 
of graph of Higher Diamondoids as follows: 

The output of this program is matrix which its rows represent the automorphisms of 
the graph. To complete our calculation we can compute the automorphism group of the 
adjacency graph of Higher Diamondoids. After running this program for the adjacency 
graph of Higher Diamondoids, we calculate Automorphism graph as follows: 

 
Aut(G1) = Aut(G5) = {()}, 
 
Aut(G2) = {(),(1,3)(5,7)(8,12)(9,11)(13,17)(14,16)(18,25)(19,23)(20,24)}, 
 
Aut(G3)={(),(1,3)(5,7)(8,10)(11,15)(16,18)(19,22),(1,19)(2,20)(3,22)(4,21)(5,16) 
(6,17) (7,18)(8,11)(9,13)(10,15),(12,14),(1,22)(2,20)(3,19)(4,21)(5,18)(6,17)(7,16) 
(8,15)(9,13)(10,11)(12,14)}, 
 
Aut(G4) = {(),(3,7)(4,9)(6,8)(13,14),(1,3)(4,5)(8,10)(11,14),(1,3,7)(4,9,5)(6,10,8) 
(11,14,13) (1,7,3) (4,5,9)(6,8,10)(11,13,14),(1,7)(5,9)(6,10)(11,13),(1,11) (2,12) 
(3,13) (4,6) (5,10)(7,14) (8,9)},  
 
Aut(G5) = {(1,11)(2,12)(3,14)(4,8)(5,10)(6,9)(7,13),(1,13,3,11,7,14)(2,12) (1,13) 
(4,10,9,8,5,6) (2,12)(3,14)(4,8)(5,6)(7,11)(9,10),(1,14)(2,12)(3,11)(4,10)(5,8)(6,9) 
(7,13)(1,14,7,11,3,13)(2,12)(4,6,5,8,9,10)}, 
 
Aut(G6) = {(),(1,4)(5,15)(6,16)(9,10)(11,17),(1,9)(2,8)(3,18)(4,10)(5,11)(6,16) 
(12,14) (15,17),(1,10)(2,8)(3,1)(4,9)(5,17)(11,15)(12,14)}, 
 
Aut(G7) = {(),(1,3)(4,6)(9,10)(11,13)(17,26)(19,24)(20,23),(1,20)(2,21)(3,23)(4,24) 
(5,22) (6,19)(7,25)(8,16)(9,1)(10,26)(11,13)(15,18),(1,23)(2,21)(3,20)(4,19)(5,22) 
(6,24)(7,25)(8,16)(9,26) (10,17)(15,18)}, 
 
Aut(G8) = {(),(1,3)(5,7)(8,2)(9,11)(13,17)(14,16)(18,25)(19,23)(20,24)}. 

 
Using these calculations, we can see that G1 – G8, as the weighted graphs, 

are not vertex transitive. These orbits are as follows:  
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Here, group G1, …, G8 are C14H20, C18H24, C22H28 [121], C26H32[1212], 
C26H32[1213], C26H32[1(2,3)4], C26H3.2[12(3)4] and C26H32[12(1)3], respectively. 
 

  
 

C14H20 C18H24 C22H28[121] C26H32[1212] 

 
 

C26H32[1213] C26H32[1(2,3)4] C26H3.2[12(3)4] C26H32[12(1)3] 
 

 

Figure 1. Structure of Higher Diamondoids. 
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A GAP Program for Computing the Symmetries of Structure of Higher 
Diamondoids 

 
f:=function(G,n); 
 local H,i,a,d,g,dd; 
 H=[]; 
     for i in 1..n] do 
 Add(a,i); 
    od; 
 for i in G do 
      Add(H,PermListList(a,i)); 
    od; 
     d:=]  ; dd:=]; 
   for i in 1..n] do 
        for g in H do 
         AddSet(d,i^g); 
                od     ; AddSet(dd,d);  d:=]; 

               od; 
         HH:=Elements(Group(H)); 
            Print("Group=",HH,"\n”); 

           Print("Orbits=",dd,"\n”); 
 return;end; 
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