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ABSTRACT 

 The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for 

every undirected graph contains information about how the graph is connected. In this paper a 

simple formula for computing Tutte polynomial of a benzenoid chain is presented.  
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1.  INTRODUCTION 

Benzenoid graphs or graph representations of benzenoid hydrocarbons are defined as finite 

connected plane graphs with no cut-vertices, in which all interior regions are mutually 

congruent regular hexagons. More details on this important class of molecular graphs can 

be found in the book of Gutman and Cyvin [1], and in the references cited therein.  

Suppose G is an undirected graph, E = E(G) and v is a vertex of G. The vertex v is 

reachable from another vertex u if there is a path in G connecting u and v. In this case we 

write vu. A single vertex is a path of length zero and so  is reflexive. Moreover, we can 

easily prove that  is symmetric and transitive. So  is an equivalence relation on V(G). 

The equivalence classes of  is called the connected components of G. The Tutte 

polynomial of a graph G is a polynomial in two variables defined for every undirected 

graph contains information about how the graph is connected [2-4]. To define we need 

some notions. The edge contraction G/uv of the graph G is the graph obtained by merging 

the vertices u and v and removing the edge uv. We write G − uv for the graph where the 

edge uv is merely removed. Then the Tutte polynomial of G is defined by the recurrence 

relation T[G; x, y) = T(G  e; x, y) + T(G/e; x, y) if e is neither a loop nor a bridge with base 

case T(G; x, y) = x
i
y

j
 if G contains i bridges and j loops and no other edges. In particular, 
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T(G; x, y) = 1 if G contains no edges. The importance of the Tutte polynomial T(G, x, y) 

comes from the algebraic graph theory as a generalization of counting problems related to 

graph coloring and nowhere-zero flow. It is also the source of several central computational 

problems in theoretical computer science.  

In this paper, the Tutte polynomial of a benzenoid chain BC(x1, ..., xr) is computed. 

This graph is constructed from r linear chains of length x1, x2, …, xr, respectively. Suppose 

BC(h) denotes the set of all benzenoid chains with h hexagons. 

 

 

Figure 1. The Molecular Graph of a Linear Chain BC(h). 

 

In Figures 1 and 2, the molecular graph of a linear chain LC(h) and 

BC(2,3,2,2,4,2,3,2,2) is depicted. 

 

 

Figure 2. The Molecular Graph of a Benzenoid Chain BC(2,3,2,2,4,2,3,2,2). 

 Throughout this article our notation is standard and taken mainly from the standard 

book of graph theory.  

2.  MAIN RESULTS 

In this section the Tutte polynomial of a benzenoid chain G(h) is computed. We first notice 

that, one can define the Tutte polynomial of a graph G as folice thlows:  

 



On the Tutte polynomial of benzenoid chains                                                                                 115 

 

 

T(G; x, y) = AE(G) (x  1)
c(A) – c(E)

 (y – 1)
c(A) + |A|  |V|

. 

Here, c(A) denotes the number of connected components of the graph (V,A).  
 

Theorem 1. T(BC(x1, x2, …, xn); x, y) = T(LBC(x1 + … + xn – n + 1); x, y). 
 

Proof. We proceed by induction on n to prove  

 

T(BC(x1, x2, …, xn); x, y) = T(LBC(x1 + … + xn – n + 1); x, y), 

and 

T(BC(x1, x2, …, xn)C5; x, y) = T(LBC(x1 + … + xn – n + 1)C5; x, y). 

 

Clearly the result is valid for n = 1. Suppose the validity of result for n = k and 

prove it for n = k + 1. Our main proof consider two cases that xk+1 = 2 or xk+1 > 2. If xk+1 = 

2 then  

 

T(BC(x1, x2, …, xk,2); x, y) = x
4
T(BC(x1, x2, …, xk); x, y) + T(BC(x1, x2, …, xk)C5; x, y) 

                                             = (x4 + x3 + x2 + x + 1)T(BC(x1, x2, …, xk); x, y)  

                                             + y T(BC(x1, x2, …, xk-1,xk-1)C5; x, y) 

                                             = T(LBC(x1 + … + xk – k + 2); x, y), 

 

as desired. On the other hand, by a similar method one can prove that  

 

T(BC(x1, x2, …, xk,2)C5; x, y) = T(LBC(x1 + … + xk – k + 2)C5; x, y). 

 

 We now assume that m = xk+1 > 2 and the result is valid for m. We have: 

 

        T(BC(x1, x2, …, xk,m+1); x, y) = (x
4
+x

3
+x

2
+x+1) T(BC(x1, x2, …, xk,m); x, y) 

                                                          + yT(BC(x1,…,xk,m)C5; x, y) 

                                                          = (x
4
+x

3
+x

2
+x+1) T(LBC(x1+ x2+…+ xk+m-k ); x, y) 

                                                          + yT(LBC(x1+…+xk+m-k)C5; x, y), 

 

which completes our proof.                                                                                                    

 

Before stating the main result of this paper we notice that if h = 1, 2 then  

 

T(G(0), x,y)=x, where G(0) is an edge, 

T(G(1), x, y) = x
5 

+ x
4 
+  x

3 
+  x

2 
+ x + y. 
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Theorem 2. Suppose G = G(x1,x2,…,xn) is an arbitrary benzenoid chain in BC(h), where h 

= x1 + x2 + … + xn –n + 1. Then for h > 2 

n

Δ+J

Δ

x)y(+)Δ+x(J
=y)x,T(G,



























 

22

12
 

                     

n

ΔJ

Δ

x)y)()Δ+Jx(
+













 












 

22

12
, 

where  

y++x+x+x+x=J 1234 , 

.4x12y1 423422234 y)+x+x+x+(x+y+)+x+x+x+(x=Δ   

 

Proof. By Theorem 1, it is enough to consider the case when G = G(h) is a linear benzenoid 

chain with exactly h hexagons. Define S(h) = T(G(h), x, y). Consider the following five 

graphs: 

 The Graph G1(h) constructed from G by replacing the end hexagon of 

G by a triangle, Figure 3(ii); 

 The Graph G2(h) constructed from G by replacing the end hexagon of 

G by a quadrangle, Figure 3(iii); 

 The Graph G3(h) constructed from G by replacing the end hexagon of 

G by a pentagon, Figure 3(iv); 

 The Graph G4(h) constructed from G by replacing the end hexagon of 

G by an edge, Figure 3(v); 

 The Graph G5(h) constructed from G1(h) by adding a loop to the 

middle vertex of the pentagon, Figure 3(vi). 

To compute the Tutte polynomial of G, we proceed by induction on h and obtain a 

recurrence relation for S(h). We first notice that S(1) = x
5
 + x

4
 + x

3
 + x

2
 + x + y. Define 

Si(h) = T(Gi(h – 1), x, y), 1  i  5. By deleting an edge from the end hexagon of G with 

vertices of degree 2 and applying Theorem 1, we can see that  

 

S(h) = x
4
S(h1) + S1(h – 1) = x

4
S(h1) + x

3
S(h1) + S2(h – 1)  

       = x
4
S(h1) + x

3
S(h1) + x

2
S(h1) + S3(h – 1) 

       = x
4
S(h1) + x

3
S(h1) + x

2
S(h1) + xS(h1) + S4(h – 1)  

       = x
4
S(h1) + x

3
S(h1) + x

2
S(h1) + xS(h1) + S(h1) + S5(h – 2)  

       = (x
4 

+ x
3 

+ x
2 

+ x + 1) S(h1) + S5(h – 2). 

 

Therefore 

S(h) = (x
4
+ x

3
+ x

2
+ x+ 1) S(h1)  + S5(h – 2).                                   (1) 
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We now calculate S5(h – 2). To do this, we notice that S5(h – 2) has a loop. Thus 

 

S5(h – 2) = yS1(h – 2).                                                         (2) 

 

To compute S1(h – 2) we put h – 1 in S(h) = x
4
S(h1) + S1(h – 1). Thus S(h – 1) = 

x
4
S(h  2) + S1(h – 2). Therefore S1(h – 2) = S(h – 1) – x

4
S(h  2). Apply Eqs. (1) and (2), 

we have: 

 

S(h) = (x
4
+ x

3
+ x

2
+ x+ 1) S(h1) + yS1(h – 2).                   (3) 

Hence,  

 

                     S(h) = (x
4
+ x

3
+ x

2
+ x+ 1) S(h1)  + y(S(h – 1) – x

4
S(h  2)) 

                             = (x
4
+ x

3
+ x

2
+ x+ 1+ y) S(h1) – x

4
y S(h – 2). 

 

 

This implies that .21
1

1 4
5

y)x,),yT(G(hxy)x,),T(G(h
x

x
+y=y)x,T(G(h), 












 There 

are several methods in discrete mathematics to solve such a recurrence equation. By 

applying one of these methods, we have  

 
n
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Δ
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where  

y++x+x+x+x=J 1234 , 

y,)+x+x+x+(x+y+)+x+x+x+(x=Δ 423422234 4x12y1   

which completes our proof.                                                                                                    

                                       

                                                                                                  
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i) The Graph G(h). iv) The Graph of G3(h – 1) 

Constructed From G(h). 

 
 

ii) The Graph G1(h  1) Constructed From 

G(h). 

v) The Graph G4(h – 1) 

Constructed From G(h). 

 
 

iii) The Graph G2(h – 1) Constructed From 

G(h). 

vi) The Graph G5(h – 2) 

Constructed From G(h). 

 

Figure 3. A Graph G(h) and Five Types of Graphs Constructed from G(h). 
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