Centric connectivity index by shell matrices

Document Type: Research Paper

Author

Babes-Bolyai University

Abstract

Relative centricity RC values of vertices/atoms are calculated within the Distance Detour and Cluj-Distance criteria on their corresponding Shell transforms. The vertex RC distribution in a molecular graph gives atom equivalence classes, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides a new index, called Centric Connectivity CC, which can be useful in the topological characterization of graphs and in QSAR/QSPR studies.

Keywords


1. N. Trinajstić, Chemical Graph Theory, CRC Press: Boca Raton, FL, 1983.
2. F. Harary, Graph Theory, Addison-Wesley, Reading, M.A., 1969.
3. M. V. Diudea, I. Gutman, and L. Janschi, Molecular Topology, Nova Science,
Huntington, N. Y., 2001.
4. M. V. Diudea, Nanomolecules and Nanostructures, Polynomials and Indices, MCM,
No. 10, Univ. Kragujevac and Fac. Sci. Kragujevac, Serbia, 2010.
5. M. V. Diudea, M. S. Florescu, and P. V. Khadikar, Molecular Topology and Its
Applications, EFICON, Bucharest, 2006.
6. H. Wiener, Structural Determination of Paraffin Boiling points, J.Am.Chem.Soc.
1947, 69, 17-20.
7. I. Lukovits, The Detour Index, Croat. Chem. Acta, 1996, 69, 873-882.
8. I. Lukovits and M. Razinger, On Calculation of the Detour Index,
J. Chem. Inf. Comput. Sci., 1997, 37, 283-286.
9. M. V. Diudea, Cluj Matrix Invariants. J. Chem. Inf. Comput. Sci. 1997, 37, 300-
305.
10. M. V. Diudea, Cluj Matrix CJu: source of various graph descriptors, Commun.
Math. Comput. Chem. (MATCH), 1997, 35, 169-183.
11. M. V. Diudea and I. Gutman, Wiener-Type Topological Indices. Croat. Chem. Acta,
1998, 71, 21-51.
12. M. V. Diudea, Valencies of Property. Croat. Chem. Acta, 1999, 72, 835-851.
13. M. V. Diudea, B. Parv, and I. Gutman, Detour-Cluj Matrix and Derived Invariants
J. Chem. Inf. Comput. Sci. 1997, 37, 1101-1108.
14. C. Y. Hu and L. Xu, Algorithm for Computer Perception of Topological Symmetry.
Anal. Chim. Acta, 1994, 295, 127-134.
15. G. S. Ezra, Symmetry Properties of Molecules, Lecture Notes in Chemistry 28,
Springer, 1982.
16. M. Razinger, K. Balasubramanian, and M. E. Munk, Graph Automorphism
Perception Algorithms in Computer-Enhanced Structure Elucidation. J. Chem. Inf.
Comput. Sci., 1993, 33, 197-201.
17. Bonchev, D.; Balaban, A.T.; Randić, M. The Graph Center Concept for Polycyclic
Graphs, Int. J. Quantum Chem. 1981, 19, 61-82.
18. Bonchev, D.; Mekenyan, O.; Balaban, A.T. Iterative Procedure for the Generalized
Graph Center in Polycyclic Graphs, J. Chem. Inf. Comput. Sci. 1989, 29, 91-97.
19. M. V. Diudea, Layer Matrices in Molecular Graphs, J. Chem. Inf. Comput. Sci.
1994, 34, 1064-1071.
20. M. V. Diudea, M. Topan, and A. Graovac, Layer Matrices of Walk Degrees, J.
Chem. Inf. Comput. Sci. 1994, 34, 1071 -1078.
21. M. V. Diudea and O. Ursu, Layer matrices and distance property descriptors.
Indian J. Chem., 42A, 2003, 1283-1294.
22. V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index: A novel
highly discriminating topological descriptor for structure property and structure
activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273-282.
23. P. E. John and M. V. Diudea, The second distance matrix of the graph and its
characteristic polynomial, Carpath. J. Math., 2004, 20 (2), 235-239.
24. T. Balaban, O. Mekenyan, and D. Bonchev, Unique Description of Chemical
Structures Based on Hierarchically Ordered Extended Connectivities (HOC
Procedures). I. Algorithms for Finding graph Orbits and Cannonical Numbering of
Atoms, J. Comput. Chem. 1985, 6, 538-551.
25. A. T. Balaban, O. Mekenyan, and D. Bonchev, Unique Description of Chemical
Structures Based on Hierarchically Ordered Extended Connectivities (HOC
Procedures). II. Mathematical Proofs for the HOC Algorithm, J. Comput. Chem.
1985, 6, 552-561.
26. O. Mekenyan, A. T. Balaban, and D. Bonchev, Unique Description of Chemical
Structures Based on Hierarchically Ordered Extended Connectivities (HOC
Procedures). VI. Condensed Benzenoid Hydrocarbons and Their 1H-NMR
Chemical Shifts. J. Magn. Reson. 1985, 63, 1-13.
27. A.T. Balaban, A. T.; Moţoc, I.; Bonchev, D.; Mekenyan, O. Topological Indices for
Structure - Activity Correlations, Top. Curr. Chem. 1993, 114, 21-55.
28. H Morgan, The generation of a unique machine description for chemical structures.
A technique developed at Chemical Abstracts Service, J. Chem. Doc. 1965, 5, 107-
113.
29. A. Ilić, I. Gutman, Eccentric Connectivity Index of Chemical Trees, MATCH
Commun. Math. Comput. Chem. 65 (2011), 731-744.
30. A. Ilić, Eccentric connectivity index, in: I. Gutman, B. Furtula, Novel Molecular
Structure Descriptors -Theory and Applications II, MCM 9, University of
Kragujevac, 2010.
31. G. Yu, L. Feng, A. Ilić, On the eccentric distance sum of trees and unicyclic graphs,
J. Math. Anal. Appl. 375 (2011), 934-944.
32. M. V. Diudea, Centric connectivity index, Studia Univ. Babes-Bolyai, Chemia,
2010, 55 (4), 319-324.