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ABSTRACT 

Zagreb indices belong to better known and better researched topological indices. We 
investigate here their ability to discriminate among benzenoid graphs and arrive at some quite 
unexpected conclusions. Along the way we establish tight (and sometimes sharp) lower and 
upper bounds on various classes of benzenoids. 
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1. INTRODUCTION  

Central paradigm of chemical graph theory is the belief that valuable information about 
physico-chemical properties of various organic molecules can be obtained from topological 
aspects of their structure. The molecules are represented by suitably defined graphs, and 
various graph-theoretic invariants of those graphs are then defined and studied. Those that 
exhibit a significant correlation with some property are then elevated to the status of 
topological indices and (usually) attract a lot of attention in both mathematical and 
chemical community. Among the better known examples are the Wiener index, the Szeged 
index, and also two invariants introduced some forty years ago known as the Zagreb 
indices.  

One of the most valuable and sought after qualities of topological indices is their 
discriminativity, i.e., the ability to assign distinct values to non-isomorphic graphs. It is 
well known that no invariant can achieve the perfect discriminativity; for large enough 
graphs it inevitably happens that two non-isomorphic graphs have the same value of the 
topological index. It might happen that for some classes of graphs the discriminativity is 
preserved longer than for some other classes; if that happens for a chemically interesting 
class, the topological index receives an additional boost in popularity. 

The Zagreb indices, mentioned above, doubtless belong to more popular invariants. 
Due to their chemical relevance they have been studied in numerous papers in chemical 
literature [2, 8, 9, 10, 13, 17]. They have also attracted significant attention from the 
mathematicians [3, 5, 6, 12, 15, 16]. Another topic that frequently appears in papers by both 
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mathematicians and chemists are the so called benzenoid graphs. The chemists study them 
as the models for benzenoid hydrocarbons, while the mathematicians see them as the finite 
pieces of hexagonal tilings. The literature on benzenoid graphs is vast; the results have been 
accumulating since the middle of the past century. An interested reader can find a good 
starting point in a monograph concerned mostly with the enumeration of matchings in such 
graphs [4]. 

Given the popularity of both subjects, one could expect that there are plenty of 
papers dealing with Zagreb indices of benzenoid graphs. That does not seem to be true. One 
of the reasons might be that, surprisingly, Zagreb indices do not discriminate well among 
benzenoid graphs. The goal of this paper is to provide a proof of the above claim and to 
investigate some consequences. 
 
2. DEFINITIONS AND PRELIMINARIES 
 
All graphs in this paper are finite and simple. For terms and concepts not defined here we 
refer the reader to any of several standard monographs such as, e.g., [14]. 

Let G be a connected graph with vertex and edge sets )(GV  and )(GE  respectively. 
For every vertex )(GVu∈ , the edge connecting u and v is denoted by uv  andδ(u)  denotes 

the degree of u  in G. The Zagreb indices are defined as follows: 
;uδ=GM

V(G)u
∑
∈

2
1 )()(

 

      
.)()()(2 ∑

∈E(G)uv
vδuδ=GM  

Here M1(G) and M2(G) denote the first and the second Zagreb index, respectively. 
The first Zagreb index can be also expressed as a sum over edges of G, 

;vδ+u=GM
GEuv

∑
∈ )(

1 )]()([)( δ  

we refer the reader to [13] for the proof of this fact. We find this definition more useful 
than the original one. The readers interested in more information on Zagreb indices can also 
wish to consult [2, 8, 9, 10, 11, 17]. 

A hexagonal system is a collection of congruent regular hexagons arranged in a 
plane in such a way that two hexagons are either completely disjoint or have a common 
edge. Such objects appear in mathematical and chemical literature also under many other 
names, such as hexagonal systems, polyhexes, honeycomb systems, hexagonal animals and 
hexagonal polyominoes. If the interior of a hexagonal system is 1-connected, we call it a 
benzenoid system. The connection between benzenoid hydrocarbons and benzenoid 
systems is quite straightforward. 
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To each benzenoid system we assign a benzenoid graph, taking the vertices of 
hexagons as the vertices of the graph, and the sides of hexagons as its edges. The resulting 
graph is simple, planar, bipartite and all its bounded faces are hexagons. The vertices of a 
benzenoid graph B lying on the border of the unbounded face are called external; other 
vertices (if any) are internal. A benzenoid graph without internal vertices is called 
catacondensed; otherwise it is pericondensed. We will denote a benzenoid graph with h 
hexagons and i internal vertices by B(h, i). It follows by a simple counting argument that 
B(h, i) has 4h + 2 − i vertices and 5h + 1 − i edges [4]. 
 
3. MAIN RESULTS 
 
3.1. CATACONDENSED BENZENOIDS 
 
We consider first the catacondensed benzenoids. As mentioned above, they do not have 
internal vertices, i = 0. Hence, a catacondensed benzenoid on h hexagons has 4h + 2 
vertices and 5h + 1 edges. Its h hexagons belong to one of the four possible types, 
depending on the number and the relative position of the edges they share with other 
hexagons. If a hexagon shares one edge with another hexagon, it is called terminal. If it 
shares three edges, no two of the shared edges can be incident to the same vertex. Such 
hexagon is called branching. If the two shared edges are parallel, the hexagon is called 
straight, and if they are not parallel, it is called kinky. The reasons for such terminology 
should be clear from the example shown in Fig. 1, where the type of a hexagon is indicated 
by the capital initial letter. We denote a catacondensed benzenoid on h hexagons by Bh. The 
number of terminal, branching, straight and kinky hexagons is denoted by T, B, S and K, 
respectively. 

  
 

Figure 1: A Catacondensed Benzenoid with Hexagons of Different Types. 
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 Let us call the edges shared by two hexagons internal, and the other edges external. 
It is clear that each internal edge contributes 6 to M1(Bh) and 9 to M2(Bh). Obviously, there 
are  h−1 internal edges in Bh, and their collective contribution to M1(Bh) is given by 6(h−1). 

Now we proceed to compute the contributions of external edges to M1(Bh). 
There are 5h−1−(h−1) = 4h + 2 external edges in Bh. The terminal hexagons contain 5T of 
them, the branching hexagons contain 3B, and the remaining hexagons together contain  
4(h − T − B) external edges. Since the total must sum to 4h+2, it follows that the number 
of terminal and the number of branching hexagons are related, T = B + 2. The external 
edges of each terminal hexagon collectively contribute 3·4 + 2·5 = 22 to M1(Bh); the three 
edges of each branching hexagon contribute together 3·6 = 18. Finally, the contributions of 
the external edges of both straight and kinky hexagons are both equal to 20 (4·5 and 4 + 2·5 
+6, respectively). Since S + K = h − T − B = h − 2T − 2, the total contribution of all 
external edges to M1(Bh) is given by  

22T + 18B + 20(S + K) = 20h + 4. 
By combining that with the contribution of internal edges we arrive at a surprising 
conclusion that the first Zagreb index of a catacondensed benzenoid does not depend on the 
details of its structure; the only thing that matters is the size. 
 
Theorem 1. Let Bh be a catacondensed benzenoid with h hexagons. Then  
 

M1(Bh) = 26h − 2. 
■ 

 
Hence, an index that has been used as a measure of branching for chemical trees 

cannot distinguish between branched and unbranched benzenoids.  
The things are only a bit better for the second Zagreb index. As mentioned, the total 

contribution of internal edges is given by 9(h − 1). For the external edges we readily obtain 
that the contributions of the hexagons of various types are 24 for T and S, 27 for B and 25 
for K. However, the numbers T and S are not related in the way T and B are; hence, we 
cannot eliminate all structural parameters from the expression for M2(Bh). We choose to 
express it in terms of B and S. 

 
Theorem 2. Let Bh be a catacondensed benzenoid with h hexagons. Then  
 

M2(Bh) = 34h − 11 + B − S, 
 

where B and S are the number of branching and straight hexagons, respectively.                 
■ 

 
It is immediately clear from the above formula that the second Zagreb index cannot 

discriminate between the catacondensed benzenoids on h hexagons having the same 
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number of straight and branching hexagons, such as the pair shown in Fig. 2. Further, it is 
clear that the minimum value of the second Zagreb index on catacondensed benzenoids is 
achieved on the benzenoid chain with largest possible number of straight hexagons. Since 
the largest value of S is h − 2, the extremal value is given by 33h − 9 and the extremal 
benzenoid is unique, the linear polyacene on h hexagons. 

For benzenoid chains, Theorem 2 provides (tight) bounds on the values of second 
Zagreb index. 

 
Figure 2: Two Catacondensed Benzenoids with the Same Second Zagreb Index. 

 
Corollary 3. Let Bh be a benzenoid chain on h hexagons. Then 
 

33h − 9 ≤  M2(Bh)  ≤ 34h − 11. 
■ 

 

We see that the second Zagreb index follows a pattern rather common for 
distance−based invariants, that achieve their extremal values on straight and on 
nowhere−straight chains. 

For branched catacondensed benzenoids, second Zagreb index favors the branching 
and penalizes the straight hexagons. It follows that the maximum value of M2(Bh) will be 
achieved on benzenoids having as many branching hexagons as possible. As the number of 
branching hexagons cannot exceed (h − 2)/2, we obtain the following upper bounds. 

 
Corollary 4. Let Bh be a catacondensed benzenoid on h hexagons. Then  
 

33h − 9 ≤ M2(Bh) ≤  [69h − 24 − q(h)]/2, 
 

 where q(h) = 0 for an even h and q(h) = 1 if h is odd. 
■ 

Since it is always possible to construct a catacondensed benzenoid with 
(h−2−q(h))/2 branching hexagons, the upper bounds are tight. Examples of such 
benzenoids are shown in Fig. 3. 

 



30                                                                                                                                           T. DOŠLIĆ 
   

3.2. PERICONDENSED BENZENOIDS 
 

We have seen that the Zagreb indices, in particular the first one, are poorly suited for 
discriminating among catacondensed benzenoids. Is the situation any better for the 
pericondensed case?  

 
 

Figure 3: Extremal Catacondensed Benzenoids for the Second Zagreb Index. 
 

Recall that a pericondensed benzenoid on h hexagons with i internal vertices has 
4h+2−i vertices and 5h + 1 − i edges. Since i vertices are internal, that leaves 4h + 2 − 2i 
vertices and the same number of edges on the perimeter of B(h, i). Each of the h − 1 + i 
internal edges will contribute 6 to M1(B(h, i)) and 9 to M2(B(h,i)). Hence in order to 
compute the indices, we must determine the contributions of the external edges. 

The external edges belong to one of three possible types, depending on the degrees 
of their end-vertices. We denote the number of external edges with end-vertices of degrees j 
and k by  jke , for j, k = 2, 3. 
 

Lemma 5. 63322 +e=e . 
 
Proof. The perimeter of B(h,i) is a simple closed curve in the plane, hence its winding 
number must be equal to 2π. Start at an external vertex and walk around the perimeter in 
the counterclockwise direction. Each edge connecting two vertices of degree 3 contributes  

3/π−  to the winding number; each edge connecting two vertices of degree 2 contributes 
3./π  The remaining edges come in pairs and their contributions cancel, leaving us with 

2233 33
2π eπ+eπ= − , 

and the claim follows.                                                                                                            ■ 
 

Now we can compute M1(B(h, i)). There are 622i24h 33 −−− e+  external edges 
connecting vertices of different degrees. Each of them contributes 5 to M1(B(h, i)), and their 
total contribution to is given by 20h − 10i − 10 33e  − 20. By combining this with 336 e  
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from the edges with both end-vertices of degree 3 and 4 33e + 24 from the edges connecting 
two vertices of degree 2, we obtain the total contribution of external edges as 20h−10i+4. 
By adding the contribution of internal edges we obtain the following result. 
 
Theorem 6. M1(B(h,i)) = 26h − 2 − 4i. 

■ 
 

We see that the result does not depend on the number of edges of different types. 
An immediate consequence is an upper bound on M1(B(h, i)) valid for all benzenoid graphs 
on a given number of hexagons. 
 
Corollary 7. M1(B(h, i)) ≤ 26h − 2. 

■ 
 

From the subsection on catacondensed benzenoids we know that this bound is tight. To 
gain some information on the lower bound, we look at benzenoid graphs with many internal 
vertices.  By considering hexagonal benzenoids with p layers of hexagons such as the one 
shown in Fig. 4, we see that the fraction of internal vertices can be arbitrarily close to one 
for large enough p. It can be verified by a straightforward computation that Hp has 3p2 
−3p+1 hexagons and 6p2 vertices, with 6(p − 1)2 internal vertices. By plugging those 
values in the formula of Theorem 6 we obtain     M1(Hp) = 54p2−30p.   Now, by dividing 
this by  3p2−3p+1 and expanding the quotient into a power series in 1/p at infinity, we 
obtain 

...2818
13p3p

3054
22

2
+

p
+

p
+=

+
pp

−
−  

 
Hence, M1(B(h, i)) ≥ 18h, and the lower bound cannot be made any better. The factor 18 
does not come as a surprise, reflecting the fact that almost all edges are internal, each of 
them contributing 3 to both of the hexagons sharing it. 

For the second Zagreb index situation is more complicated, due to the fact that the 
contribution of the external edges with end-vertices of different degrees is not the mean 
value of the contributions of the other two types of edges. Hence we cannot avoid an 
additional parameter in our formulas, and the most convenient one is e33. The following 
result is obtained in much the same way as Theorem 6, and we state it omitting the details. 
 

Theorem 8. M2(B(h,i)) = 33h − 9 − 3i + 33e .                                                                      ■ 
 

From Theorems 2 and 8 it follows that for catacondensed benzenoids 33e  = h − 2 + 
B − S, a fact easily verified by direct computations. 
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Figure 4: Hexagonal Benzenoid H3 with 3 Layers of Hexagons. 

 
Let us consider a benzenoid graph and connect the midpoints of all its peripheral 

hexagons in the way shown in Fig. 5. (We connect the midpoints by a segment across the 
shared edge) If the obtained figure is convex, such as the left one in Fig. 5, we say that the 
benzenoid graph is convex. Obviously, a benzenoid graph is convex if and only if e33 = 0. 
The only convex catacondensed benzenoid is the linear polyacene. 
 

 
 

Figure 5: A Convex (left) and a Non-Convex (right) Benzenoid. 
 
Corollary 9. Let Kh be a convex benzenoid on h hexagons. Then M2(Kh) ≤ 33h − 9.          ■ 
 

It is clear that for establishing the lower bound we may restrict our attention on 
convex  benzenoids with many internal edges. As in the case of M1, by considering Hp we 
can see that for large enough p the value of M2(Hp) will be arbitrarily close to 27h, again 
reflecting the fact that almost all edges are internal. 
 
4. CONCLUDING REMARKS  

We have considered the behavior of two Zagreb indices on catacondensed and 
pericondensed benzenoids. It has been shown that both indices are quite insensitive on the 
finer structural details. The first Zagreb index is unable to discriminate among 
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catacondensed benzenoids on the same number of hexagons and among the pericondensed 
benzenoids with the same number of internal vertices (on the same number of hexagons, of 
course). The second Zagreb index is mildly sensitive on the graph structure; its main source 
of variability comes from the deviation from convexity. Established lower and upper 
bounds are tight, but far from being sharp. Typically there are many benzenoids achieving 
the extremal values. The only exception seems to be the linear polyacene, reflecting the fact 
that it is the unique convex catacondensed benzenoid.  

It would be straightforward to extend the presented analysis also to some other 
classes of graphs of chemical interest, such as the polyphenylenes. Another direction would 
be to examine some other invariants defined in terms of degree-dependent contributions of 
edges. We present a result of such type concerning the first Zagreb coindex.  

The first Zagreb coindex of a graph G is defined by 

∑
∉ )(

1 )]()([)(
GEuv

vδ+uδ=GM , 

where the summation is over all edges not in G. The quantity was introduced in a paper 
concerned with computing certain degree-weighted generalizations of  Wiener polynomials 
[7]. The second Zagreb coindex is defined by the same modification of definition of the 
second Zagreb index. We refer the reader to [1] for some basic properties of Zagreb 
coindices. Among other results, there is a formula relating the first Zagreb index and the 
first Zagreb coindex of a graph G on n vertices and m edges, 

)()1(2)( 11 GMnm=GM −− . 
By combining this formula with Theorem 1 we obtain the following result. 
 
Corollary 10. Let Bh be a catacondensed benzenoid on h hexagons. Then 
 
                                                            )1210(4)( 2

1 +hh=BM h − .                                                 ■ 
 

Similar results can be derived also for other classes of benzenoids, but we leave that 
to the reader. 
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