Study of fullerenes by their algebraic properties

Document Type: Research Paper


Shahid Rajaee Teacher Training University


The eigenvalues of a graph is the root of its characteristic polynomial. A fullerene F is a 3- connected graphs with entirely 12 pentagonal faces and n/2 -10 hexagonal faces, where n is the number of vertices of F. In this paper we investigate the eigenvalues of a class of fullerene graphs.


1. I. Gutman, The energy of a graph, Ber. Math.Statist. Sekt. Forsch. Graz 103 (1978) 1–
2. I. Gutman, The Energy of a Graph: Old and New Results, Algebraic Combinatorics and
Applications, SpringerVerlag, Berlin, 2001.
3. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry,
SpringerVerlag, Berlin, 1986.
4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C60:
Buckminsterfullerene. Nature 318 (1985) 162–163.
5. H. W. Kroto, J. E. Fichier and D. E. Cox, The Fullerene, Pergamon Press, New York,
6. D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications (Pure
and Applied Mathematics), Academic Press, 1997.
7. S. L. Lee, Y. L. Luo, B. E. Sagan and Y.-N. Yeh, Eigenvectors and eigenvalues of some
special graphs, IV multilevel circulants. Int. J. Quant. Chem. 41 (1992) 105 – 116.