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ABSTRACT

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI
matrices of a graph G are obtained. Those graphs for which these bounds are best possible are
characterized.
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1. INTRODUCTION

Let G be a connected simple graph with vertex and edge sets V(G) and E(G), respectively.
As usual, the distance between the vertices u and v of G is denoted by dg(u,v) (d(u,v) for
short) and it is defined as the number of edges in a minimal path connecting u and v. The
diameter of G is the length of a longest shortest path of G denoted by diam(G). Suppose e=
uv € E(G) and w € V(G). Define d(e,w) = Min{d(u,w),d(v,w)}. If f = ab € E(G) then fis
said to be parallel with e and we write f || e, if d(e,a) = d(e,b). It is easy to see that the
parallelism is not symmetric.

The edge PI index (PI index as short) of a graph G is defined as PI(G) = Z—yy[my(e) +
my(e)], where my(e) is the number of edges lying closer to u than to v and my(e) is defined
analogously. This topological index was introduced by Padmakar Khadikar [10,11]. The
mathematical properties of this new index can be found in recent papers, [1,4,5,7,8,19].
There is a vertex version of this new index, named vertex PI index proposed very recently
in [12]. It is defined as PI,(G) = Ze-y[ny(e) + ny(e)], where ny(e) is the vertex contribution
of the edge e and defined as the number of vertices lying closer to the vertex u than the
vertex v and n,(e) is defined analogously, see [2,6,12—17] for mathematical properties of
this new topological index.

Suppose G is a graph with adjacency matrix A(G) and A is an eigenvalue of A(G). It is
convenient to name A an eigenvalue of G. The maximum degree of G is denoted by A(G). If
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V(G) = {vi, V2, ...,va} then the vertex PI-matrix of G, VPIM(G), is defined so that its
(i,j)—entry, aj;, is equal to

o {nvi(e) + n,,j(e) e = v;v;

ij —

0 Otherwise
The PI-matrix of G, PIM(G), is defined analogously. Since the vertex Pl-matrix is
symmetric, all its eigenvalues d;,1=1, 2, . . ., n, are real and can be labeled so that 5, > 6,

>-... >0,. The eigenvalues of VPIM(G) are said to be the vertex Pl-eigenvalues of G and
the VPIM—spectrum of G is denoted by VPI-Spec(G).

The aim of this paper is to extend some results of Indulal [9]. Our notations are standard
and taken mainly from [3].

2. PRELIMINARY RESULTS

The considerations in the subsequent sections are based on the applications of the following
definitions.

Definition 1. Let G be a graph, V(G) = {vi, V2, ..., va} and P = VPIM(G). Then the vertex
Pl—degree of vj, P;, is defined as P, = Z}l=1 ajj. Moreover, if {Py,Ps, ..., Py} is the vertex
Pl—degree sequence of G then the sequence Ty, T, ..., T,, where T; = Zjnzl a;;P; is called
the second vertex PI-degree of G. G is said to be k-vertex PI regular if P;=k, 1 <i<n. G

is called pseudo k—vertex PI-degree regular if g = k, for all i.

A lot of theorems in algebraic graph theory can be extended to PI and vertex PI
matrices of graphs. Before going to the main results of this paper, we calculate the PI and
vertex PI matrices of some well-known graphs.

Example 1. Consider the complete graph K,.. Then VPIM(K,,) = 2A(K},).

Example 2. Suppose C, denotes the cycle graph of length n. If n is even then VPIM(C,) =
nA(C,) and if n is odd then VPIM(C,) = (n — 1)A(C,).

Example 3. A k-regular graph G is said to be strongly regular with parameters (v,k,r,s) if
[v(G)| = v, any two adjacent vertices of G have exactly r common neighbors and any two
non-adjacent vertices of G have exactly s common neighbors. In this case, we denote G by
Srg(v.k,r,s). It is well-known that if G is strongly regular with parameters (v,k,r,s) then r >
0 and moreover, strongly regular graphs have diameter 2. In [6], the authors proved that in
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a strongly regular graph G= Srg(v,k,1,s), ny(e) = ny(e) = k — r, for every edge e = uv.
Therefore, VPIM(Srg(v,k,r,s)) = 2(k—1)A(Srg(v.,k,r,)).

Theorem 1. Suppose G is a k—PI regular graph then
a) k is an eigenvalue of VPIM(G),
b) The multiplicity of k is one,

¢) For each eigenvalue 9, |8| <k
Proof. The proof is similar to [3, Proposition 3.1] and so it is omitted. u

Theorem 2. Suppose G is a graph, d = diam(G) and e = ¢(G) is the number of distinct
eigenvalues of G. Then e >d + 1. In particular, e(G) = 2 if and only if G is a complete
graph.

Proof. It is clear that 2 <n,(e) + n,(e) < n. Define VPIM(G)* = [di(]’.{)]. Then by

induction on k, one can see that 2¥a f]k) < d(k) < nkal(]), where al(])

walks of length k connecting vertices v; and v;. Therefore, dfj) = 0 if and only if a( )=0.

is the number of

Now a similar argument as [3,Theorem 3.13] completes the proof. u

Lemma 1. Let G be n-vertex graph and VPI — Spec(G) = {64, ..., 6,}. Then 8m <
" 6% <2mn? and 24t < Y1, 67 < 6tn3, where t is the number oftrlangles in G.

Proof. Suppose VPIM(G)* = [d{})]. So,2*ay <d’ <n*al’. If VPI - Spec(G) =
{11, ..., Ay} then Spec (VPIM(G))? = {/12, o, A2}, Thus, Tr(VPIM(G))? = 83+ -+ 62
and so, 8m = ¥, 224 < Y1 67 = ¥, d% < Y, n2aP = n2 ¥, A2 = 2n2m. We
now assume that ft; denotes the number of triangles with vertex at v
Since, Tr(VPIM(G))3 = 834+ 63, 8t; = 22 <d¥ <n2alP = n3t;. This implies
that Y1\, 8t; < Y, d3y =YL, 62 < Y n3t;. Therefore, 48t < Zi:l 87 < 6ndt, where t
is number of triangle, as de51red. u

Theorem 3. Let G be a connected graph with PI,, Spectrum &§; = -+ = §,,. Then y(G) >

Proof. The proof is similar to [3, Theorem 3.18] and so it is omitted. u

3. MAIN RESULTS
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In the following discussions G is always a simple connected graph with P as a vertex PI,
matrix. We also used the following lemma, which gives a bound on the eigenvalues of G.

Lemma 2. Let G be n-vertex graph. Then for every PI,, eigenvalue § of G, |§]| < nA(G).

Proof. Let X = [xq,X5, ..., X,]" be eigenvector corresponding to §. Thus MX = §X.If
Xm = Max{Xy, X, ..., X} then YiL; pmiX; = A So, [Al [xy| < Xjig pmj|xj| < nA(G)[Xp].
This implies that |A| < nA(G). |

Lemma3.T; + T, + -+ T, = PZ + P? + --- + P2.

Proof. By definition P; = }i_,; a;; and T; = }.7_; a;;P;. Now
Ti+T,+ - +T, = [1,1, ., 1]1(P[PL, Py, ..., P, ]9
= ([1,1, ..., 11P)[P;, P,, ..., B ]*
=P# + PZ + -+ + PZ.
The last equality is follows from the associativity of matrix multiplication. u

lv( )

Theorem 4. Let G be a graph. Then &, > and the equality holds if and only if G is

vertex PIregular.

Proof. Let x = \/_15 (1,1, ...,1) be a unit P—vector. Then by Raleigh principle, applied to the

1 1 t

xpxt _ galPrPoPrlEL bl 1oy 2Ply
= = = i=1 P

XX 1 n n

vertex PI- matrix P of G, we get §; =

Suppose G is vertex PI-regular. Then the sum of each row of P is a constant, say k and
2PI, = nk. By Perron—Frobenius theorem, a real square matrix with positive entries has a
unique largest real eigenvalue and that the corresponding eigenvector has strictly positive

components [3, Theorem 0.2]. Apply this theorem to prove that k is the simple and it is the

nk _ 2P,

greatest eigenvalue of P. Thus §; = k = —= and hence equality holds. Conversely if

equality holds, then X is the eigenvector corresponding to §; and hence Px = §;x. This then
gives P; = §; for all i. Since P; is an integer it follows that G is vertex PI regular. Hence
the theorem is complete. u

Theorem 5. Let G be a graph with vertex PI degree sequence {P;, P,, ..., P,}. Then

5 > \/Pf +P,% + ..+ P2
1_

n

with equality if and only if G is vertex PI-regular.
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Proof. Let P be the vertex PI matrix of G and X = (x4,Xy, ...,X,) be the unit positive
eigenvector of P corresponding to §,. Take C = \%(1,1, ...,1). Then C is a unit positive
vector. So we have PX = §;X = P2X = §,PX = §,°X = X'P2X = §,%. Therefore &, =
VXtPZX > +/C'P2C. Now CP = \%(1,1, o 1)P = P,,..,P,). Hence X'P2X =

1

J_E(Pl'
n 2 n 2

PX(PX)t = Zilepi thus 6, > ’ZFTlp' and hence the inequality holds. Assume that G is

vertex PI regular. Then P, = k for all i and hence by the Perron—Frobenius theorem, k is the
simple and it is the greatest eigenvalue of P. But then

§ =k= nk? (R R
1 n n

and hence equality holds. Conversely if equality holds, then C is the eigenvector

corresponding to &;. Then as in the proof of Theorem 1, G is vertex PI-regular. u

Theorem 6. Let G be a graph with vertex PI-degree sequence {P;, P,, ..., P,} and second

2 2 2
vertex Pl degree sequence {T;, Ty, ..., T,}. Then §; = M Equality holds if
\/ P12 +P,2+. . +Py

and only if G is pseudo vertex PI regular.

Proof. Let P be the vertex Pl-matrix of G and X = (X4, X5, ...,X,) be the unit positive

eigenvector of P corresponding to §;. Take C = ;(Pl, P,, ..., Py). Then C is a unit
n 2
i=1"1i

positive vector. So we have PX = §,X = P2X = §,PX = 6,°X = X'P2X = §,°. Thus
1 1

8, = VXtp2X. Since PC = ——|a;][P, Py ., Bl = ——IT1, Ty, ..., Ty],
2

n

i=1Pi 2P
tn2 t _ Ti%4T 2+ 4Ty Ty % +T % +.. 4Ty 2
X'P°X = PX(PX)"* = —————. Therefore, 6, = |-—5—>——-. We now assume
Py2+P,%+.. 4Py Py 24P, % +..+Py
that G is pseudo vertex PI-regular, so % =k or T; = kP;, for all i. Then PC = kC, showing
i

that C is an eigenvector corresponding to k and hence §; = k. Thus the equality holds.
Conversely if equality holds then as in the proof Theorem 4, we get C is the eigenvector

corresponding to §; and PC = §;C. This implies that g = §;. In other words G is pseudo

vertex PI regular. |

Theorem 7. The bound for 8, is improving from Theorems 4 to 6.
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Proof.
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By Lemma 3, Y, T;=3Y",P” Also by Cauchy—Schwartz inequality

Q=1 T)? < n(Xi=y Tiz) and (X4 P)* < n(Xiey Piz)- Now

Z?=1Ti2 (Z?=1Ti)2 _ (Z?=1Pi2) \/Zl 1Pl Pi)z _ ﬁ
01 2 \/Z?zlPiz = nEh,P?) _|nEk,P?) = nxn  n

This completes our proof. u
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