Computing Vertex PI, Omega and Sadhana Polynomials of $F_{12(2n+1)}$ Fullerenes

MODJTABA GHORBANI

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran

(Received January 10, 2010)

ABSTRACT

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as $\text{PI}_v(G) = \sum_{e \in G} n_u(e) + n_v(e)$. Then Omega polynomial $\Omega(G,x)$ for counting qoc strips in G is defined as $\Omega(G,x) = \sum m(G,c)x^c$ with $m(G,c)$ being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. The vertex PI, omega and Sadhana polynomials of this class of fullerenes are computed for the first time.

Keywords: Fullerene, vertex PI polynomial, Omega polynomial, Sadhana polynomial.

1. INTRODUCTION

Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon atoms. Fullerenes F_n can be drawn for $n = 20$ and for all even $n \geq 24$. They have n carbon atoms, $3n/2$ bonds, 12 pentagonal and $n/2-10$ hexagonal faces. The most important member of the family of fullerenes is C_{60} [1,2].

Let Σ be the class of finite graphs. A topological index is a function Top from Σ into real numbers with this property that $\text{Top}(G) = \text{Top}(H)$, if G and H are isomorphic.

Let $G = (V,E)$ be a connected bipartite graph with the vertex set $V = V(G)$ and the edge set $E = E(G)$, without loops and multiple edges. The number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v is denoted by $n_u(e)$. Analogously, $n_v(e)$ is the number of vertices of G whose distance to the vertex v is smaller than u. The vertex PI index is a topological index which is introduced in [3]. It is defined as the sum of $[n_u(e) + n_v(e)]$, over all edges of a graph G. Let G be an arbitrary graph. Two edges $e = uv$ and $f = xy$ of G are called codistant (briefly: e co f) if they obey the
topologically parallel edges relation. For some edges of a connected graph G there are the following relations satisfied [4,5]:

$$e \co e \iff f \co e$$

$$e \co f, f \co h \Rightarrow e \co h$$

though the last relation is not always valid.

Set $C(e) := \{f \in E(G) \mid f \co e\}$. If the relation “co” is transitive on $C(e)$ then $C(e)$ is called an orthogonal cut “oc” of the graph G. The graph G is called co-graph if and only if the edge set $E(G)$ is the union of disjoint orthogonal cuts.

Let $m(G,c)$ be the number of qoc strips of length c (i.e., the number of cut-off edges) in the graph G, for the sake of simplicity, $m(G,c)$ will hereafter be written as m. Three counting polynomials have been defined [6-8] on the ground of qoc strips:

$$\Omega(G, x) = \sum_{c} m \cdot x^{c}, \quad \Theta(G, x) = \sum_{c} m \cdot c \cdot x^{c} \quad \text{and} \quad \Pi(G, x) = \sum_{c} m \cdot c \cdot x^{c-c}. \quad \Omega(G, x)$$

and $\Theta(G, x)$ polynomials count equidistant edges in G while $\Pi(G, x)$, non-equidistant edges. In a counting polynomial, the first derivative (in $x=1$) defines the type of property which is counted; for the three polynomials they are:

$$\Omega'(G,1) = \sum_{c} m \cdot c \cdot |E(G)|, \quad \Theta'(G,1) = \sum_{c} m \cdot c \cdot 2 \quad \text{and} \quad \Pi'(G,1) = \sum_{c} m \cdot c \cdot (e - c).$$

If G is bipartite, then a qoc starts and ends out of G and so $\Omega(G, 1) = r / 2$, in which r is the number of edges in out of G.

The Sadhana index $Sd(G)$ for counting qoc strips in G was defined by Khadikar et. al. [9,10] as $Sd(G)=\sum_{c} m(G,c)(|E(G)|-c)$, where $m(G,c)$ is the number of strips of length c.

We now define the Sadhana polynomial of a graph G as $Sd(G,x) = \sum_{c} m(G,c) \cdot x^{|E| - c}$. By definition of Omega polynomial, one can obtain the Sadhana polynomial by replacing x^{c} with $x^{|E| - c}$ in omega polynomial. Then the Sadhana index will be the first derivative of $Sd(G, x)$ evaluated at $x = 1$. Herein, our notation is standard and taken from the standard book of graph theory [11-17].

Example 1. Let C_n denotes the cycle of length n.

$$\Omega(C_n, x) = \begin{cases} \frac{n}{2} x^{2} & 2 \mid n \\ nx & 2 \nmid n \end{cases} \quad \text{and} \quad Sd(C_n, x) = \begin{cases} \frac{n}{2} x^{n-2} & 2 \mid n \\ nx^{n-1} & 2 \nmid n \end{cases}. $$

Example 2. Suppose K_n denotes the complete graph on n vertices. Then we have:
Vertex PI, Omega and Sadhana Polynomials of $F_{12(2n+1)}$ Fullerenes

$$\Omega(K_n, x) = \begin{cases} \frac{n}{2} \left(x^{\frac{n}{2}} + x^{\frac{n-1}{2}} \right) & 2 \mid n \\ \frac{n}{n} x^{\frac{n}{2}} & 2 \nmid n \end{cases}$$ and $Sd(K_n, x) = \begin{cases} \frac{n}{2} \left(x^{\frac{n}{2}}(n-2) + x^{\frac{n-2}{2}} \right) & 2 \mid n \\ \frac{n}{n} x^{\frac{n}{2}} & 2 \nmid n \end{cases}$

Example 3. Let T_n be a tree on n vertices. We know that $|E(T_n)| = n - 1$. So,
$$\Omega(T_n, x) = \Theta(T_n, x) = (n - 1)x, \quad Sd(T_n, x) = \Pi(T_n, x) = (n - 1)x^{n-2}.$$

2. **Main Results and Discussion**

The aim of this section is to compute the counting polynomials of equidistant (Omega, Sadhana and Theta polynomials) of an infinite family $F_{12(2n+1)}$ of fullerenes with $12(2n+1)$ carbon atoms and $36n+18$ bonds (the graph $F_{12(2n+1)}$, Figure 1 is $n = 4$).

Theorem 4. The omega polynomial of fullerene graph $F_{12(2n+1)}$ for $n \geq 2$ is as follows:
$$\Omega(F_{12(2n+1)}, x) = 12x^3 + 12x^{2n-2} + 6x^{n-1} + 3x^{2n+4}.$$

Proof. By figure 1, there are four distinct cases of qoc strips. We denote the corresponding edges by f_1, f_2, f_3 and f_4. By the table 1 proof is completed.

<table>
<thead>
<tr>
<th>Edge</th>
<th>Co distance</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>f_2</td>
<td>2n-2</td>
<td>12</td>
</tr>
<tr>
<td>f_3</td>
<td>2n+4</td>
<td>3</td>
</tr>
<tr>
<td>f_4</td>
<td>n-1</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1. The Number of Equidistant Edges.

Corollary 5. The Sadhana polynomial of fullerene graph $F_{12(2n+1)}$ is as follows:
$$Sd(F_{12(2n+1)}, x) = 12x^{36n+15} + 12x^{34n+20} + 6x^{35n+19} + 3x^{34n+14}.$$

Now, we are ready to compute the vertex PI polynomial of fullerene graph $F_{12(2n+1)}$. It is well-known fact that an acyclic graph T does not have cycles and so $n_u(e|G) + n_v(e|G) = |V(T)|$. Thus $P_i(T) = |V(T)|, |E(T)|$. Since a fullerene graph F has 12 pentagonal faces, $P_i(F) < |V(F)|, |E(F)|$. Let G be a connected graph. The P_i polynomials of G are defined as $P_i(G; x) = \sum_{e=uv \in E(G)} x^{n_u(e|G) + n_v(e|G)}$. Obviously $P_i(G, 1) = P_i(G)$ and $P_i(G, 1) =$...
\[|E(G)|. \text{ Define } N(e) = |V| - (n_u(e) + n_v(e)). \text{ Then } PI_v(G) = \sum_{e \in E(G)} [V| - N(e)] = |V| \cdot |E| - \sum_{e \in E(G)} N(e) \text{ and we have:} \]

\[
PI_v(G, x) = \sum_{e \in \mathcal{E}(G)} x^{n_u(e) + n_v(e)} = \sum_{e \in \mathcal{E}(G)} x^{V(G) - N(e)} = x^{V(G)} \cdot \sum_{e \in \mathcal{E}(G)} x^{-N(e)}.
\]

Figure 1. The graph of fullerene $F_{12(2n+1)}$ for $n = 4$.

Example 6. Suppose F_{30} denotes the fullerene graph on 30 vertices, see Figure 2. Then $PI_v(F_{30}, x) = 10x^{20} + 10x^{22} + 20x^{26} + 5x^{30}$ and so $PI_v(F_{30}) = 1090$.

Figure 2. The Fullerene Graph F_{30}.
Theorem 7. The vertex PI polynomial of fullerene graph $F_{12(2n+1)}$ for $n \geq 2$ is as follows:

$$
\text{PI}_v(F_{12(2n+1)}, x) = 24x^{24n-64} + 12x^{24n-44} + 12x^{24n-12} + 6(n-3)x^{24n-4} + 24x^{24n-2} + 24x^{24n} + 24x^{24n+6} + 24x^{24n+8} + 24x^{24n+10} + 6(5n-22)x^{24n+12}.
$$

Proof. From Figures 3, one can see that there are ten types of edges of fullerene graph $F_{12(2n+1)}$. We denote the corresponding edges by e_1, e_2, \ldots, e_{10}. By table 2 the proof is completed.

<table>
<thead>
<tr>
<th>Edge</th>
<th>Number of vertex which are codistance from two ends of edges</th>
<th>Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>0</td>
<td>6(5n-22)</td>
</tr>
<tr>
<td>e_2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>e_3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>e_4</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>e_5</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>e_6</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>e_7</td>
<td>16</td>
<td>6(n-3)</td>
</tr>
<tr>
<td>e_8</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>e_9</td>
<td>56</td>
<td>12</td>
</tr>
<tr>
<td>e_{10}</td>
<td>76</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 2. Computing $N(e)$ for Different Edges.

![Figure 3](https://example.com/figure3.png)

Figure 3. Types of Edges of Fullerene Graph $F_{12(2n+1)}$.
REFERENCES