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A computational technique for solution of mathematical model of gas 
solution in a fluid is presented. This model describes the change of 
mass of the gas volume due to diffusion through the contact surface. 
An appropriate representation of the solution based on the Müntz 
polynomials reduces its numerical treatment to the solution of a 
linear system of algebraic equations. Numerical examples are given 
and discussed to illustrate the effectiveness of the proposed approach. 
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1. INTRODUCTION  

A number of examples in nature can illustrate the capability of liquids to dissolve gases; in 
fact, human life would not be feasible if blood cannot dissolve oxygen, nor marine life is 
likely to happen if oxygen did not dissolve in water. The solubility anticipation of oxygen 
gas in the liquid is important as it can be used in aquaculture and biological issues such as 
oxygen uptake in lungs and its dissolution in the blood. The prediction of CO2 gas 
solubility in water can be used for growing plants and in the production of carbonated 
drinks [24]. Such interesting natural phenomena are described by differential equations. 

This paper is concerned with providing good quality algorithm for the numerical 
solution of the three–term fractional differential equations of the form 

(ݐ)ᇱ + (ݐ)ଵ/ଶܦ(ݐ)ܨ + (ݐ)(ݐ)ܩ =  (1.1)                           ,(ݐ)ܪ
combined with the suitable initial condition (0) =  . This equation describes the change
of mass of the gas volume due to diffusion through the contact surface [2]. Here, ܦଵ/ଶ(ݐ) 
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denotes the fractional derivative ܦ∗
ଵ/ଶ(ݐ) in the Caputo version [7] and the Riemann–

Liouville fractional derivative ܦோ ௧
ଵ/ଶ(ݐ), defined by 

∗ܦ
ଵ/ଶ(ݐ) =  

1
ߨ√

න
(ݏ)ᇱ
ݐ√ − ݏ

ݏ݀
௧


,                                   (1.2) 

ோܦ ௧

భ
మ(ݐ) =  

1
ߨ√

݀
ݐ݀
න

(ݏ)

ݐ√ − ݏ
ݏ݀

௧


,                              (1.3) 

respectively [9,23]. It is well-known that the fractional derivative of Riemann–Liouville 
and Caputo type are closely linked by the following relationship: 

∗ܦ
ଵ/ଶ(ݐ) = ோܦ  ௧

ଵ/ଶ[(ݐ) −  (1.4)                                   .[(0)
Fractional calculus, including the operators of fractional order integration and 

differentiation, is known to provide an excellent setting for capturing in a model framework 
concerned with real–world problems in a variety of disciplines from physics, chemistry, 
biology and engineering [1, 4, 17, 23]. In order to approximate fractional derivatives, a 
number of methods have been proposed [4, 6, 11]. Since few of the fractional differential 
equations can be solved explicitly, it is necessary to employ numerical techniques to find 
the approximate solution. Especially, numerical schemes for the multi–term fractional 
differential equations have been developed in the past ten to fifteen years and have been 
studied in numerous papers [4, 9, 10, 22]. 

As a fractional derivative is a non–local operator, it is very natural to consider a 
global method like the spectral method for its numerical solution. Spectral collocation 
methods are efficient and highly accurate techniques for numerical solution of differential 
equations [13, 25]. The basic idea of the spectral collocation method is to assume that the 
unknown solution(ݐ)can be approximated by a linear combination of some basis 
functions, called the trial functions, such as orthogonal polynomials. 

Whereas the classical orthogonal polynomials work well for numerical solution of 
conventional differential equations, their application for the fractional differential equations 
implies at least two difficulties in connection with the collocation method. First, according 
to Theorems 4.1 in [16], the solutions of the problem (1.1) can contain some fractional–
power terms with which the classical orthogonal polynomials cannot match. In this case, 
the rate of convergence of the numerical approximations is not reasonable when the 
classical polynomial bases are used. Second, to apply a collocation method, it is required 
that the derivatives of any trial function can be expressed in terms of the same trial bases. 
However, the fractional derivatives of a classical polynomial are not polynomials. 
Therefore, roughly speaking, a good approximation for the fractional derivatives via the 
classical orthogonal polynomials is not hoped to be obtained. 

In the present article, the Müntz–Legendre polynomials are used, which are a family 
of generalized orthogonal polynomials. These polynomials were introduced and 
investigated in [5, 18]. A fractional derivative of a Müntz–Legendre polynomial is again a 
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Müntz–Legendre polynomial. This is a crucial feature of these bases for using them in the 
collocation method for the numerical solution of the fractional differential equations. 

The structure of the paper is as follows. In the next section, the derivation of 
mathematical model of gas solution in a fluid is briefly recalled. Then, to construct a 
numerical algorithm, this equation as a three–term fractional differential equation is 
reformulated. In Section 3, the Müntz–Legendre polynomials and related topics are 
introduced. A description of the proposed numerical scheme is provided in Section 4. Some 
details concerning the practical implementation are discussed in Section 5. Finally, the 
numerical results to demonstrate the efficiency of the proposed method are given in Section 
6. 
 
2. PROBLEM STATEMENT 

The mathematical model of the process of solution of a compressible gas volume in a fluid, 
when there are no convection currents, is described by the system [2, 23] 

݀
݀߬ ൬ ܸ݂ ቀ

߬
,ቁܲ(0ߠ ߬)

ܯ
ܴܶ൰ = ܭܵ

ܥ߲
ฬ௫ୀݔ߲

,         0 < ߬ <  (2.1) ,ߠ

ܭ√−                   డ
డ௫
ቚ
௫ୀ

= ோܦ ఛ
ଵ/ଶ[0)ܥ, ߬) − ,ݔ)ܥ 0)], (2.2) 

                                    ܲ(0, ߬) = ,0)ܥߢ ,ݔ)ܲ       ,(߬ 0) = ,ݔ)ܥߢ 0), (2.3) 

where ܸ is the initial gas volume, ߠis the time of the gas compression to zero volume, ݂ is 
a function describing a change of the gas volume, such that ݂(0) = 1 and ݂(1) =  is ܯ ,0
the molecular weight of the gas, ܴ is the molar gas constant, ܭ is the gas diffusion 
coefficient in the fluid, ܵ is the contact surface between the gas and the fluid, ߢ is the 
Henry’s constant, ݔ)ܥ, ߬) is the gas concentration, and ܲ(ݔ, ߬) is the unknown gas pressure 
(Figure 1). 

The gas pressure near the contact surface ܲ(0, ߬) is to be found. The ݔ–axis goes 
down from the contact surface, for which ݔ = 0. The gas temperature ܶ is assumed to be 
constant, which implies the gas compression is slow enough. If necessary, a weak 
nonisothermality can be accounted by making a correction to the function ݂(߬/ߠ). The 
depth of the fluid is taken infinite [2, 23]. 

The change of the gas volume mass due to diffusion through the contact surface is 
described by (2.1). The mass change depends on the change of the gas concentration near 
the contact surface, which is given by (2.2). Taking into account the condition (2.3), makes 
the consideration of mass transfer process for ݔ > 0 unnecessary. 

The problem (2.1)−(2.3) for determining the dimensionless gas pressure 

(߬) =  
ܲ(0, ߬)
,ݔ)ܲ 0) =  

,0)ܥ ߬)
,ݔ)ܥ 0), 
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near the constant surface can be written as [23] 

(ݐ)ᇱ + ∗ܦ(ݐ)ܨ
ଵ/ଶ(ݐ) + (ݐ)(ݐ)ܩ = (0)          ,0 = 1, (2.4) 

where 

ݐ =
߬
ߠ ∈

(ݐ)ܨ     ,[0,1) =
ߣ

(ݐ)݂ (ݐ)ܩ      , =
݂ᇱ(ݐ)
(ݐ)݂ ߣ     , =

ߠܭ√ܴܵܶ
ܯߢ ܸ

 . 

 

 
Figure 1. Solution of a gas in a fluid [23]. 

 
 

3. MÜNTZ–LEGENDRE POLYNOMIALS 

Let the complex numbers from the set Λ = ,ߣ} … , (ߣ)} satisfy the condition ℜߣ > − ଵ
ଶ
 

and ߣ ≠ ݇ ,ߣ ≠ ݆. Then, for every ݊ = 0,1,2, …, the Müntz–Legendre polynomials on the 
interval [0,1] are defined by [5, 18] 

(ݔ;Λ)ܮ = ܿݔఒೖ


ୀ

 ,            ܿ =
∏ ߣ) + ఔߣ̅ + 1)ିଵ
ఔୀ

∏ ߣ) − ఔ)ߣ
ఔୀ,ఔஷ

 .               (3.1) 

For the Müntz–Legendre polynomials (3.1), the orthogonality relation 

න (ݔ;Λ)തܮ(ݔ;Λ)ܮ
ଵ


ݔ݀ =

ߜ
ߣ + ߣ̅ + 1

 , 

holds for every ݉, ݊ = 0,1,2, …  [5]. 
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In this paper, the case when the powers of the Müntz basis elements build an 
arithmetic progression is considered [12, 20]. In other words, we assume that ߣ = ݇/2. In 
this case, the Müntz–Legendre polynomials on the interval [0,1] are represented by the 
formula 

(ݐ)ܮ = ܿݐ/ଶ


ୀ

 ,            ܿ =
(−1)ି

݇! (݊ − ݇)!ෑ(݇ + ߥ + 2)
ିଵ

ఔୀ

 .                (3.2) 

The functions ܮ(ݐ), ݇ = 0,1, … ,݊ form an orthogonal basis for ॸ, where 
ॸ = span൛1, tଵ/ଶ, t, tଷ/ଶ, … , t୬/ଶൟ. 

The denseness of ॸ in [0,1]ܥ, the set of continuous functions on the interval [0,1], in the 
uniform norm is characterized by ∑ 1/݇ஶ

ୀଵ = ∞ [5]. 
 
4. MÜNTZ–LEGENDRE COLLOCATION METHOD  

In this section, the collocation method based on Müntz–Legendre polynomials is applied 
for solving an initial value problem of the form 

(ݐ)ᇱ + ∗ܦ(ݐ)ܨ
ଵ/ଶ(ݐ) + (ݐ)(ݐ)ܩ =  (4.1) ,(ݐ)ܪ

(0) =   . (4.2)

Under certain conditions on the functionsܩ ,ܨ and ܪ, the initial value problem (4.1)−(4.2) 
possesses unique solution in an appropriate space of functions [9, 16]. As a generally 
applicable method to determine the exact solution of initial value problem (4.1)−(4.2) is not 
readily accessible, some numerically computed approximate solutions are inevitable. 
Numerical evaluation of this solution is the aim of this section. At first, the solution  is 
approximated by  ∈ ॸ  as the finite sum 

(ݐ) = ∑ ܽܮ(ݐ)
ୀ , (4.3) 

where ܽ are unknown coefficients. It is worthwhile to note that if  ∈ ॸ , then ܦ∗
ଵ/ଶ 

belongs to ॸ, too. This key property is crucial for application of the collocation method to 
the initial value problem (4.1)−(4.2). 

The unknown coefficients ܽ in approximation (4.3) are obtained from the initial 
condition 

(0) =   , (4.4)

and the fact that (ݐ) should satisfy the fractional differential equation in some suitably 
chosen collocation points ߦ, ݆ = 1,2, … , ݊. More precisely, the relation holds as follows: 

൯ߦᇱ൫ + ∗ܦ൯ߦ൫ܨ
ଵ/ଶ൫ߦ൯ + ൯ߦ൫൯ߦ൫ܩ =  ൯. (4.5)ߦ൫ܪ

 
Substituting (4.3) into (4.4), the equation 
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ܽ݃



ୀ

=  , (4.6)

with ݃ =  ݊ (0) is obtained. In its turn, equation (4.5) can be presented in form ofܮ
algebraic equations 

ܽ݃



ୀ

= ݆     ,൯ߦ൫ܪ = 1,2, … , ݊, (4.7) 

where 
݃ = ᇱܮ ൫ߦ൯ + ∗ܦ൯ߦ൫ܨ

ଵ/ଶܮ൫ߦ൯ +  . ൯ߦ൫ܮ൯ߦ൫ܩ

Note that ܮᇱ ൫ߦ൯ and ܦ∗
ଵ/ଶܮ൫ߦ൯ in (4.7) can be computed by using the subsequent stable 

methods (5.3) and (5.8), respectively. The equations (4.6) and (4.7) are nothing else but a 
linear system of ݊ + 1 equations for the ݊ + 1 unknown coefficients ܽ that can be solved 
by one of the known methods. Substituting the coefficients ܽ into (4.3) leads to an 
approximated solution of the fractional initial value problem (4.1)−(4.2). 

It should be noted that, the error analysis of the collocation method based on 
nonclassical polynomials is very complicated and is beyond the scope of this paper.  

  
5. IMPLEMENTATION ISSUES 

In this section, some details to provide additional insight on this new method are presented. 
 

5.1.  NUMERICAL EVALUATION OF (࢚)ࡸ AND ࡰ/(࢚)ࡸ 

A direct evaluation of Müntz–Legendre polynomials in the form (3.1) can be problematic 
in finite arithmetic, especially when ݊ is a large number andݔ is close to 1. These problems 
have been addressed by Milovanović in [18]. He stated that the coefficients ܿ become 
very large when ݊ increases, but their sums are always equal to 1. 

Here, a stable method for evaluating the Müntz–Legendre polynomials defined by 
(3.2) is presented. The proposed technique is based on a three–term recurrence relation 
induced from the following theorem.  
 
Proposition 5.1. ([12]) Let ܮ(ݐ) be Müntz–Legendre polynomial defined by (3.2) and 
ݐ ∈ [0,1]. Then 

(ݐ)ܮ = ܲ
(,ଵ)൫2√ݐ − 1൯, (5.1) 

holds true, where ܲ
(,ଵ) is a Jacobi polynomial. 
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Hence, in view of [21, (18.9.2)], the Müntz–Legendre polynomials ܮ(ݐ) can be 
evaluated by means of the three–term recursion 

ܾଵܮାଵ(ݐ) = ܾଶ(ݐ)ܮ(ݐ) − ܾଷܮିଵ(ݐ),       ݊ ≥ 1, (5.2) 

where ܮ(ݐ) ≡ (ݐ)ଵܮ ,1 = ݐ√3 − 2, and 
            ܾଵ = 2(݊ + 1)(݊ + 2)(2݊ + 1), 

                                         ܾଶ(ݐ) = 2(݊ + 1)ൣ(2݊+ 1)(2݊+ 3)൫2√ݐ − 1൯ − 1൧, 
  ܾଷ = 2݊(݊ + 1)(2݊ + 3). 

Another result of Proposition 5.1 is a formula for evaluating ܮᇱ  ,More precisely .(ݐ)
by means of [21, (18.9.15)] the first derivative of ܮ(ݐ) is given by 

ᇱܮ (ݐ) =
݊ + 2
ݐ√2 ܲିଵ

(ଵ,ଶ)൫2√ݐ − 1൯. (5.3) 

 
Proposition 5.2. ([12]) Let ܮ(ݐ) be Müntz–Legendre polynomial defined by (3.2) and 
ݐ ∈ [0,1]. Then 

∗ܦ
ଵ/ଶܮ(ݐ) =  

݊ + 2
ߨ√

න (1 − ଶ)ିଵ/ଶݔ
ܲିଵ
(ଵ,ଶ)൫2ݐ√ݔ − 1൯݀ݔ,

ଵ


 (5.4) 

holds true. 
 
5.2.  GAUSS–TYPE QUADRATURE RULES 
An ݊–point quadrature rule for the weight function ݓ is called a formula of the type 

න ݔ݀(ݔ)݂(ݔ)ݓ



= ݓ݂(ݔ)



ୀଵ

+  ܴ[݂], (5.5) 

where the sum on the right–hand side of the equation provides an approximation to the 
integral and ܴ is the error. The numbers ݔ, ݇ = 1, … ,݊ are called nodes and ݓ  are 
called weights of the quadrature rule. Among all quadrature rules of the form (5.5) those of 
the Gaussian type have the best performance. More precisely, if nodes ݔ and weights ݓ  
are chosen in the way that quadrature rule (5.5) becomes exact for polynomials of degree at 
most 2݊ − 1, then this quadrature rule is called a Gauss–type quadrature rule. It can be 
proved that the nodes ݔ in a Gaussian quadrature are the roots of the orthogonal 
polynomial (ݓ;ݐ)ߨ associated with the weight function and the weights ݓ  can be obtained 
from the following system of linear equations:  

ݓݔ




ୀଵ

= න ݔ݀(ݔ)ݓݔ



,        ݆ = 0,1, … , 2݊ − 1. (5.6) 

As ݊ increases, finding roots of (ݓ;ݐ)ߨ and solving the linear system (5.6) become 
an ill–conditioned and time consuming problem. Alternatively, the Golub–Welsch 
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algorithm to determine the nodes and the weights of a Gaussian quadrature can be used 
[15].  

The construction of the Gaussian quadrature (5.5) for an arbitrary݊ ≥ 1 can be 
realized very easy by MATHEMATICA package OrthogonalPolynomials[8,19]. 
Alternatively, for this purpose, there is also Gautschi’s package OPQ written in MATLAB 
[14]. These packages provide many other calculations with orthogonal polynomials and 
different quadrature rules, and they are downloadable from Web Sites: 
www.mi.sanu.ac.rs/gvm/ and www.cs.purdue.edu/archives/, 
respectively. 

To calculate the integral on the right–hand side of (5.4), ܰ–point Gaussian quadrature 
rule 

න (1− ଶ)ିଵ/ଶݔ
ଵ


ݔ݀(ݔ)݂ = ݓ݂(ݔ)

ே

ୀଵ

,     ݂ ∈ ℙଶேିଵ, (5.7) 

is used. The weight function (ݔ)ݓ = (1−  ଶ)ିଵ/ଶ is a nonclassical one and no explicitݔ
formulae are known for ݔ and ݓ . However, the Chebyshev and Golub–Welsch 
algorithms to calculate the nodes and weights in (5.7) can be used [14, 15]. The quadrature 
rule (5.7) with ܰ = ⌈݊/2⌉ becomes exact for computing the integral in (5.4). The nodes and 
weights in the generalized Gaussian quadrature rule (5.7) are reported in Table 1. 

 
Table 1: Nodes and weights in 10–point Gaussian quadrature rule (5.7). 

Nodes ݔ Weights ݓ  
0.013428248384359 0.034319541263749 
0.165229282898357 0.077205134746572 
0.165088161001579 0.114617582317493 
0.292182309608721 0.145264568917587 
0.438817309663802 0.169221867374936 
0.591551320859218 0.187274168806872 
0.736030889552124 0.200396120129594 
0.858545000002092 0.209464924712622 
0.947393707327565 0.215148632394853 
0.994059476652251 0.217883786130620 

 
After obtaining the nodes ݔ and weights ݓ , the fractional derivative ܦ∗

ଵ/ଶܮ(ݐ) 
can be computed by using the formula 

 

∗ܦ
ଵ/ଶܮ(ݐ) =

݊ + 2
ߨ√

 ݓ

⌈/ଶ⌉

ୀଵ
ܲିଵ
(ଵ,ଶ)൫2ݔ√ݐ − 1൯. (5.8) 



Numerical solution of gas solution in a fluid: fractional derivative model                       433 

 

This section ends with a brief discussion of collocation points. Grid points for 
orthogonal collocation method should lie approximately in a minimal–energy configuration 
associated with inverse linear repulsion between points. Hence, a proper choice of 
collocation points is crucial for the accuracy of the numerical solution and for its 
computational stability [13, 25]. In the proposed case, a particularly convenient choice for 
the collocation points ߦ is ߦ = ݆ ,ଶݐ = 1, … , ݊ where ݐ are Chebyshev points associated 
with the interval [0,1], i.e., 

ݐ =
1
2 ൬1 − cos

݆ߨ
݊ ൰ ,     ݆ = 0,1, … , ݊ . 

 
6. NUMERICAL EXPERIMENTS 

In this section, some numerical studies are presented to illustrate and test the behavior of 
the approach described in the Section 4. As is common, there is no comparison to other 
known methods. The main reason for this is that the numerical solution for this problem 
comes only in [23] and has a slow convergence. The following numerical experiments were 
implemented through MATHEMATICA and MATLAB. 
 

Example 1. As the first experiment, given ߣ =  and the change of gas volume (ߨ√3)/8
(ݐ)݂ = 1−  then the initial value problem (2.4) has the analytical solution ,ݐ√

(ݐ) = 1 + ݐ√ −
1
3 ݐ + ൬

32
ߨ27 −

1
3൰  . ݐ√ݐ

The analytical and numerical solutions of this problem are plotted in Figure 2. Furthermore, 
to explore the dependence of errors on the discretization parameter n, the error in the ∞–
norm is used. As it is seen, the presented method provides accurate results even with a few 
number of nodes.  

Example 2. Consider the initial value problem (2.4) with ݂(ݐ) = 1 −  In this case, it is .ݐ
hard to find a closed form solution of (2.4). However, thanks to the work of Babenko [3, 
(7.25)], if the compression is slow (ߣ ≫ 1), the following asymptotic representation for 
 :is obtained (ݐ)

(ݐ) = 1 +
ݐ√2
ߨ√

1
ߣ + ൬

3
2 ݐ − 1൰

1
ଶߣ + ࣩ ൬

1
ଷߣݐ√

൰ ݐ     , > 0 . (6.1) 

Moreover, in the case of rapid compression (ߣ ≪ 1), a similar expression in powers 
of ߣ can be obtained [3, (7.26)] as follows: 

(ݐ) =
1

1 − ݐ +
2
ߨ√

ቆ
ݐ√

1− ݐ −
sinିଵ ݐ√

(1 − ଷ/ଶቇ(ݐ ߣ + ࣩ ቆ
ଶߣ

(1− ଶቇ(ݐ ݐ     , < 1 . (6.2) 
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Figure 2: Analytical and numerical solutions of problem (2.4) (Example 1). 

 
In Figure 3, the numerical and asymptotic solutions of problem (2.4) are illustrated. 

These results indicate that the approximate solutions of the present method are in 
agreement with asymptotic solutions. It can be shown that the maximum pressure, ௫, 
occurs at ݐ = 1. On the other hand, from (6.1), the following asymptotic expression is 
obtained 

(ݐ) ≈ 1 +
2
ߨ√

1
ߣ +

1
2

1
ଶߣ + ࣩ(1)

1
ଷߣ ߣ     , → ∞ . (6.3) 

The numerical solutions for various values of ݊ are reported in Table 2. As 
tabulated, the asymptotic expression (6.3) as a reference “exact” solution is used. It can be 
seen that the presented method provides accurate results and indicate an exponential decay.  

 
Table 2: Numerical solutions at ݐ = 1 and related errors with ߣ = 5 (Example 2). 

݊ 5 10 15 20 25 30 
 (1) 1.2457842 1.2456764 1.2456758 1.2456758 1.2456758 1.2456758
Error 1.08(04) 5.93(07) 2.19(09) 5.89(12) 1.24(14) 2.22(16) 
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Figure 3. Numerical and asymptotic solutions of problem (2.4): slow compression (left) 
and rapid compression (right) (Example 2). 

 
7. CONCLUSION 

In this paper, a computational technique based on the Müntz polynomials for solution of 
mathematical model of gas solution in a fluid is presented. The exact solution of this 
problem can contain some fractional–power terms with which the Müntz polynomials can 
match. An appropriate representation of the solution based on the Müntz polynomials 
reduces its numerical treatment to the solution of a linear system of algebraic equations. 
The numerical results obtained by the new method indicated the effectiveness of the 
proposed approach.  
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