1. S. Schnell andC. Mendoza, Closed form solution for time dependent enzyme
kinetics, J Theor Biol.187 (1997) 207–212.
2. A. K. Sen, An application of the Adomian decomposition method to the transient
behavior of a model biochemical reaction, J Math Anal Appl. 131 (1988) 232–245.
3. P. Pongsumpun, Mathematical model of Dengue disease with incubation period of
virus, World Acad. Sci. Eng. Technol. 44 (2008) 328–332.
4. M. Rafiq, M.O.Ahmed, S. Ahmed, R. Siddique and A. Pervaiz, Some finite
Difference Methods for One Dimensional Burgers Equation for Irrotational
Incompressible Flow Problem, Pak. J. Engg. & Appl. Sci. 9 (2011) 13–16.
5. Z. Zafar, M. O. Ahmad, A. Pervaiz and M. Rafiq, Fourth Order Compact Method
for One Dimensional Inhomogeneous Telegraph Equation with (ℎ, ), Pak. J.
Engg. & Appl. Sci. 14 (2014) 96–101.
6. R. E. Mickens, Numerical Integration of population models satisfying conservation
laws: NSFD METHODS, Biological Dynamics 1 (2007) 427–436.
7. R. E. Mickens, Dynamical consistency: a fundamental principle for constructing
Non–standard finite difference schemes for differential equations, J. Differ. Equ.
Appl. 11 (2005) 645–653.
8. A. A. M. Arafa, S. Z. Rida and H. Mohamed, An application of the homotopy
analysis method to the transient behavior of a biochemical reaction model, Inf. Sci.
Lett. 3 (2014) 29–33.
9. S. O. Edeki, E. A. Owoloko, A. S. Osheku, A. A. Opanuga, H. I. Okagbue and G.
O. Akinlabi, Numerical solutions of nonlinear biochemical model using a hybrid
numerical – analytical technique, Int. J. Math. Anal. 9 (2015) 403–416.
10. F. Brauer and C. Castillo Chavez, Mathematical Models in Population Biology and
Epidemology, Springer–Verlag, 2012.
11. I. Hashim, M. S. H. Chowdhury and S. Mawa, On multistage homotopy
perturbation method applied to non–linear biochemical reaction model, Chaos
Soltion & Fractals 36 (2008) 823–827.
12. Z. Zafar, K. Rehan and M. Mushtaq, Fractional-order scheme for bovine babesiosis
disease and tick populations, Adv. Difference Equ. (2017) 2017:86.