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Inspired by the chemical applications of higher-order connectivity index 
(or Randic′ index), we consider here the higher-order first Zagreb index 
of a molecular graph. In this paper, we study the linear regression 
analysis of the second order first Zagreb index with the entropy and 
acentric factor of an octane isomers. The linear model, based on the 
second order first Zagreb index, is better than models corresponding to 
the first Zagreb index and F-index. Further, we compute the second 
order first Zagreb index of line graphs of subdivision graphs of 2D-
lattice, nanotube and nanotorus of ܷܶܥସ[ݍ,]଼ܥ, tadpole graphs, wheel 
graphs and ladder graphs. 
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1. INTRODUCTION  

Let ܩ =  are ܩ be a simple (molecular) graph. The number of vertices and edges of (ܧ,ܸ)
denoted by ݊ and ݉, respectively. As usual ݊ is said to be the order and ݉ the size of ܩ. 
The degree of a vertex ݒ ∈  is the number of vertices adjacent to ,(ݒ)ீ݀ denoted by ,(ܩ)ܸ
(ݒ)ீݏ and ,ܩ in ݒ = ∑  ௨∈ேಸ(௩) (ݒ)ܰீ where ,(ݑ)ீ݀ = ݒݑ|ݑ} ∈  is the set of {(ܩ)ܧ
neighbor vertices of ݒ in ܩ. Let ܧఈ(ܩ) be the set of all paths of length ߙ in ܩ and clearly 
(ܩ)ଵܧ = -ݎ is called a ܩ then ,ݎ have same degree equal to ܩ If all the vertices of .(ܩ)ܧ
regular graph. The tadpole graph ܶ,  is a graph of order ݊ + ݇ obtained by joining an end 
of a path of length ݇ to a vertex of a cycle graph ܥ [34].  
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 The join ܩ + (ܩ)ܸ is a graph with the vertex set ܪ and ܩ of graphs ܪ ∪  and (ܪ)ܸ
edge set (ܩ)ܧ ∪ (ܪ)ܧ ∪ ݑ|ݒݑ} ∈ ݒ and (ܩ)ܸ ∈ ܥ The join .{(ܪ)ܸ +  ܥ ଵ of a cycleܭ
and a single vertex is referred to as a wheel graph ܹାଵ of order ݊ + 1. The Cartesian 
product ܩ × ܩ)ܸ has the vertex set ܪ and ܩ of graphs ܪ × (ܪ = (ܩ)ܸ ×  and (ܪ)ܸ
,ܾ)(ݔ,ܽ) ܩ is an edge of (ݕ × ܽ] if and only if ܪ = ܾ and ݕݔ ∈ ݔ] or [(ܪ)ܧ =  and ݕ
ܾܽ ∈ ܮ  is given byܮ The ladder graph .[(ܩ)ܧ = ଶܭ × ܲ , where ܲ is a path of order ݊. 
The subdivision graph ܵ(ܩ) [14] of a graph ܩ is the graph obtained from ܩ by replacing 
each of its edges by a path of length 2. The line graph (ܩ)ܮ of a graph [14] ܩ is the graph 
whose vertex set is (ܩ)ܧ in which two vertices are adjacent if and only if they share a 
common vertex in ܩ. We refer to [14] for unexplained graph theoretic terminology and 
notation. 

Chemical graph theory is a branch of mathematics which combines graph theory 
and chemistry. Graph theory is used to mathematically model molecules in order to gain 
insight into the physical properties of these chemical compounds. The basic idea of 
chemical graph theory is that physico-chemical properties of molecules can be studied by 
using the information encoded in their corresponding chemical graphs. A graph invariant 
is any function on a graph that does not depend on a labeling of its vertices. Such 
quantities are called topological indices. The Zagreb indices have been introduced in 1972 
in the report of Gutman and Trinajstić on the topological basis of the ߨ-electron energy-
two terms appeared in the topological formula for the total ߨ-energy of alternate 
hydrocarbons, which were in 1975 used by Gutman et al. as branching indices, and later 
employed as molecular descriptors in QSAR and QSPR. The first Zagreb index ܯଵ and 
second Zagreb index ܯଶ of a graph ܩ are defined as  

(ܩ)ଵܯ  = ∑  ௩∈(ீ) (ܩ)ଶܯ  ଶ  and(ݒ)ீ݀ = ∑  ௨௩∈ாభ(ீ)  .(ݒ)ீ݀(ݑ)ீ݀
The first Zagreb index can be written also as  

(ܩ)ଵܯ = ∑  ௨௩∈ாభ(ீ) (ݑ)ீ݀] +  (1.1)   .[(ݒ)ீ݀
Another vertex-degree-based graph invariant  

∑ = (ܩ)ܨ  ௩∈(ீ)  ଷ(ݒ)ீ݀
was encountered in [13] and also called F-index [12]. 

The connectivity index (or Randić index) of a graph ܩ, denoted by ߯(ܩ), was 
introduced by Randić [31] in the study of branching properties of alkanes. It is defined as  

(ܩ)߯  = ∑  ௨௩∈ாభ(ீ)
ଵ

ඥௗಸ(௨)ௗಸ(௩)
   (1.2) 

 In [16, 17], with the intention of extending the applicability of the connectivity 
index, Kier, Hall, Murray and Randic′ considered the higher-order connectivity index of a 
graph ܩ as  

ఈ߯(ܩ) = ∑  ௨భ௨మ⋅⋅⋅௨ഀశభ∈ாഀ(ீ)
ଵ

ඥௗಸ(௨భ)ௗಸ(௨మ)⋅⋅⋅ௗಸ(௨ഀశభ)
  (1.3) 



On the spectra of reduced distance matrix of the generalized Bethe trees                    301                     

 It has found numerous applications [6, 18, 19, 22, 23, 24, 25, 26, 35, 36]. Results 
related to the mathematical properties of this index have been reported in [27, 28]. 

Bearing in mind Eqs. (1.2) and (1.3), we can consider the higher-order first Zagreb 
index of Eq. (1.1) as  

ఈܯଵ(ܩ) = ∑  ௨భ௨మ⋅⋅⋅௨ഀశభ∈ாഀ(ீ) (ଵݑ)ீ݀] + (ଶݑ)ீ݀ + ⋯+  (1.4) [(ఈାଵݑ)ீ݀
By Eq. (1.4), it is consistent to define the second order first Zagreb index as  

 ଶܯଵ(ܩ) = ∑  ௨భ௨మ௨య∈ாమ(ீ) (ଵݑ)ீ݀] + (ଶݑ)ீ݀ +  (1.5) .[(ଷݑ)ீ݀
The present paper is organized as follows: In Section 2, we study the chemical 

applicability of the second order first Zagreb index. In Section 3, we establish some basic 
results on ଶܯଵ which are useful in later sections. In Sections 4, we obtain explicit 
formula for computing the second order first Zagreb index of line graphs of subdivision 
graphs of 2D-lattice, nanotube and nanotorus of ܷܶܥସ]଼ܥ,  tadpole graphs, wheel ,[ݍ
graphs and ladder graphs. 
 
2. ON THE CHEMICAL APPLICABILITY OF THE SECOND ORDER FIRST 

ZAGREB INDEX  
 
In this section, we will discuss the regression analysis of entropy (ܵ) and acentric factor 
(AcentFac) of an octane isomers on the degree based topological indices of the 
corresponding molecular graph. The productivity of the second order first Zagreb index 
was tested by using a data set of octane isomers, that can be found at 
http://www.moleculardiscriptors.eu/dataset.htm, it is shown that the second order first 
Zagreb index is highly correlated with the entropy (ܴ = 0.961093128) and also with 
acentric factor (ܴ = 0.990202) of octane isomers. The data set of octane isomers 
(columns 1-3 and 5 of Table 1) are taken from above web link whereas last column taken 
form [5], and the fourth column of Table 1 is computed by Eq. (1.5).   

The linear regression models for the entropy and acentric factor of Table 1 are 
obtained by using the least squares fitting procedure as implemented in ܴ software [2]. 
More details about the linear regression can be found in [33]. The fitted models are:  

 ܵ = 123.14880(±1.30984)− 0.31608(±0.02271)ଶܯଵ  (2.1) 
ܵ = 150.8878(±3.5756)−  ଵ   (2.2)ܯ(±0.1153)1.4722
ܵ = 122.31091(±1.38791)−  (2.3)  ܨ(±0.01643)0.20607

ܿܽܨݐ݊݁ܿܣ = 0.4792(±0.005195)− 0.002555(±0.00009006)ଶܯଵ  (2.4) 
ܿܽܨݐ݊݁ܿܣ = 0.6996325(±0.0216422)−  ଵ  (2.5)ܯ(±0.0006977)0.0117797
ܿܽܨݐ݊݁ܿܣ = 0.4700828(±0.0093940)−  (2.6)  ܨ(±0.0001112)0.0016380

where the values in the brackets of Eqs. (2.1) to (2.6) are the corresponding standard errors 
of the regression coefficients (intercept and slope). 

Tables 2 and 3 show that, the correlation coefficient (ܴ =  0.961093128 and 
ܴ =  0.990202) of the experimental entropy and acentric factor of an octane isomers with 
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second order first Zagreb index in the models (2.1) and (2.4) are better than in the models 
(2.2), (2.3) and (2.5), (2.6), respectively, also the model (2.1) is better than the model 
related to entropy of octane isomers on Sanskruti index (ܴ = 0.829 and residual standard 
error is 17.837) [15]. 
 
Table 1: Experimental values of the entropy, acentric factor and the corresponding values 
of degree based topological indices of octane isomers. 
 

Alkane S AcentFac ࡹ                ࡹ F 
n-octane 111.67 0.397898 34 26 50 

2-methyl-heptane 109.84 0.377916 41 28 62 
3-methyl-heptane 111.26 0.371002 43 28 62 
4-methyl-heptane 109.32 0.371504 43 28 62 

3-ethyl-hexane 109.43 0.362472 45 28 62 
2,2-dimethyl-hexane 103.42 0.339426 58 32 92 
2,3-dimethyl-hexane 108.02 0.348247 52 30 74 
2,4-dimethyl-hexane 106.98 0.344223 50 30 74 
2,5-dimethyl-hexane 105.72 0.35683 48 30 74 
3,3-dimethyl-hexane 104.74 0.322596 62 32 92 
3,4-dimethyl-hexane 106.59 0.340345 54 30 74 

2-methyl-3-ethyl-pentane 106.06 0.332433 54 30 74 
3-methyl-3-ethyl-pentane 101.48 0.306899 66 32 92 
2,2,3-trimethyl-pentane 101.31 0.300816 71 34 104 
2,2,4-trimethyl-pentane 104.09 0.30537 65 34 104 
2,3,3-trimethyl-pentane 102.06 0.293177 73 34 104 
2,3,4-trimethyl-pentane 102.39 0.317422 61 32 86 

2,2,3,3-tetramethylbutane 93.06 0.255294 90 38 134 

 
Figure 1: Scatter diagram of (a) ܵ on ଶܯଵ; (b) ܿܽܨݐ݊݁ܿܣ on ଶܯଵ, superimposed by 
the fitted regression line.  
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Figure 2: Scatter diagram of (a) ܵ on ܯଵ; (b) ܿܽܨݐ݊݁ܿܣ on ܯଵ, superimposed by the 
fitted regression line.  
 

 
Figure 3: Scatter diagram of (a) ܵ on ܨ; (b) ܿܽܨݐ݊݁ܿܣ on ܨ, superimposed by the fitted 
regression line.  
 
Table 2: Correlation coefficient and residual standard error of regression model. 
 

Index Correlation coefficient (R) with entropy Residual standard error 
ଶܯଵ 0.961093128 1.286 
 ଵ 0.954306031 1.392ܯ
 1.415 0.952732911 ܨ
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Table 3: Correlation coefficient and residual standard error of regression model  

Index Correlation coefficient (R) with acentric factorResidual standard error 
ଶܯଵ 0.990202 0.005101 
 ଵ 0.973087869 0.008424ܯ
 0.009577 0.965038859 ܨ

 

3. MATHEMATICAL PROPERTIES FOR THE SECOND ORDER FIRST 
ZAGREB INDEX OF A GRAPH 

 
In this section, we will establish some basic results on ଶܯଵ which are useful in later 
sections. 
 
Theorem 3.1  For a graph ܩ =   ,(ܧ,ܸ)

 ଶܯଵ(ܩ) = (ܩ)ଶܯ2 + ଵ
ଶ
(ܩ)ܨ − ଷ

ଶ
 (3.1)  .(ܩ)ଵܯ

 
Proof. By Eq. (1.5), we have 

 ଶܯଵ(ܩ) = ∑  ௨௩௪∈ாమ(ீ) (ݑ)ீ݀) + (ݒ)ீ݀ +  ((ݓ)ீ݀
                  = ∑  ௩∈(ீ) ∑  ௨ஷ௪∈ேಸ(௩) (ݑ)ீ݀) + (ݒ)ீ݀ +  .((ݓ)ீ݀
In ∑  ௨ஷ௪∈ேಸ(௩) (ݑ)ீ݀) + (ݒ)ீ݀ + appears ൫ௗಸ(௩) (ݒ)ீ݀ the quantity ,((ݓ)ீ݀

ଶ ൯ =
ௗಸ(௩)(ௗಸ(௩)ିଵ)

ଶ
 times, and each quantity ݀ீ(ݑ) of {݀ீ(ݑ)|ݑ ∈ −(ݒ)ீ݀) appears {(ݒ)ܰீ 1) 

times, i.e., the quantity (ݒ)ீݏ = ∑  ௨∈ேಸ(௩) (ݒ)ீ݀) appears (ݑ)ீ݀ − 1) times. So,  
 ଶܯଵ(ܩ) = ∑  ௩∈(ீ) ∑  ௨ஷ௪∈ேಸ(௩) (ݑ)ீ݀) + (ݒ)ீ݀ +  ((ݓ)ீ݀

     = ∑  ௩∈(ீ) ቂ
ௗಸ(௩)(ௗಸ(௩)ିଵ)

ଶ
(ݒ)ீ݀ + (ݒ)ீ݀) −  ቃ(ݒ)ீݏ(1

     = ଵ
ଶ
ൣ∑  ௩∈(ீ) ݀ீଷ(ݒ) −∑  ௩ ݀ீଶ(ݒ)൧ + ∑  ௩ −(ݒ)ீݏ(ݒ)ீ݀ ∑  ௩  (ݒ)ீݏ

     = ଵ
ଶ

(ܩ)ܨ] [(ܩ)ଵܯ− + 2∑  ௨௩∈ா(ீ) (ݒ)݀(ݑ)݀ −∑  ௩∈(ீ) ݀ଶ(ݒ) 

     = ଵ
ଶ
−(ܩ)ܨ ଵ

ଶ
(ܩ)ଵܯ +  (ܩ)ଵܯ−ଶ(G)ܯ2

     = (ܩ)ଶܯ2 + ଵ
ଶ
(ܩ)ܨ − ଷ

ଶ
 .(ܩ)ଵܯ

 
Theorem 3.1 shows that the second order first Zagreb index ଶܯଵ is a linear 

combination of the first Zagreb index ܯଵ, the second Zagreb index ܯଶ and the F-index ܨ. 
For the path ܲ, the wheel ܹାଵ (݊ ≥ 3) and the complete bipartite graph ܭ,௦, we have 

)ܨ       ܲ) = 8݊ − )ଵܯ,14 ܲ) = 4݊ − )ଶܯ,6 ܲ) = 4݊ − 8; 
)ܨ  ܹାଵ) = ݊ଷ + )ଵܯ,27݊ ܹାଵ) = ݊ଶ + )ଶܯ,9݊ ܹାଵ) = 3݊ଶ + 9݊; 
(,௦ܭ)ܨ     = ଶݎ)ݏݎ + (,௦ܭ)ଵܯ,(ଶݏ = ݎ)ݏݎ + (,௦ܭ)ଶܯ,(ݏ =  .ଶݏଶݎ
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By Eq. (3.1) in Theorem 3.1, we can get the following result. 
Corollary 3.2 For ݊ ≥ 3, ଶܯଵ( ܲ) = 6݊ − 14. 
 
Corollary 3.3 For ݊ ≥ 3, ଶܯଵ( ܹାଵ) = ଵ

ଶ
[݊ଷ + 9݊ଶ + 36݊]. 

 
Corollary 3.4 ଶܯଵ(ܭ,௦) = ௦

ଶ
ଶݎ] + ଶݏ + ݏݎ4 − ݎ3 −  .[ݏ3

 
Theorem 3.5  Let ܩ be a ݎ-regular graph on ݊ vertices. Then ଶܯଵ(ܩ) = ଷ

ଶ
ଷݎ] −  .[ଶݎ

 

Proof. Since ܩ is a ݎ-regular graph, ܯଵ(ܩ) = (ܩ)ܨ ,ଶݎ݊ = (ܩ)ଶܯ ଷ andݎ݊ = య
ଶ

. Hence, 
by Theorem 3.1, we get the desired result. 
 
Corollary 3.6  For the cycle ܥ on ݊ ≥ 3 vertices, ଶܯଵ(ܥ) = 6݊. 
 

Corollary 3.7 For the complete graph ܭ on ݊ ≥ 3 vertices, ଶܯଵ(ܭ) = ଷ(ିଶ)(ିଵ)మ

ଶ
. 

 
Lemma 3.8 [3] Let ܩ be a graph with ݊ vertices and ݉ edges. Then  

(ܩ)ଵܯ  ≤ ݉( ଶ
ିଵ

+ ݊ − 2).    (3.2) 
 
Lemma 3.9 [4] Let ܩ be a graph with ݊ vertices and ݉ edges, ݉ > 0. Then the equality  

(ܩ)ଵܯ = ݉൬
2݉
݊ − 1 + ݊ − 2൰ 

holds if and only if ܩ is isomorphic to the star graph ܵ or ܭ or ܭିଵ ∪   .ଵܭ
 
Theorem 3.10 Let ܩ be a graph with ݊ vertices and ݉ edges. Then  

 ଶܯଵ(ܩ) ≤ 3݉(݊ − 1)( 
ିଵ

+ ିସ
ଶ

)  (3.3) 
with equality if and only if ܩ is isomorphic to ܭ.   
 
Proof. 

 ଶܯଵ(ܩ) = ∑  ௨௩௪∈ாమ(ீ) (ݑ)ீ݀] + (ݒ)ீ݀ +  [(ݓ)ீ݀
  ≤ ∑  ௨௩௪∈ாమ(ீ) 3(݊ − 1)      (3.4) 

        = 3(݊ − 1)∑  ௩∈(ீ) ൫ௗಸ(௩)
ଶ ൯ = 3(݊ − 1)(−݉ + ଵ

ଶ
 ((ܩ)ଵܯ

   ≤ 3(݊ − 1)(−݉ + ଵ
ଶ
݉( ଶ

ିଵ
+ ݊ − 2))     (3.5) 

        = 3݉(݊ − 1)ቀ 
ିଵ

+ ିସ
ଶ
ቁ. 
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 The relations (3.4) and (3.5) were obtained by taking into account ݀ீ(ݒ) ≤ ݊ − 1 
for each vertex ݒ ∈  and Eq. (3.2), respectively. The equality in (3.3) holds if and (ܩ)ܸ
only if the equalities in (3.4) and (3.5) hold, if and only if ݀ீ(ݒ) ≤ ݊ − 1 for each vertex 
ݒ ∈   .is a complete graph from Lemma 3.9 ܩ ,.i.e ,(ܩ)ܸ
 
Lemma 3.11 [4] Let ܩ be a graph with ݊ vertices and ݉ edges. Then  

(ܩ)ଵܯ  ≥ 2)2݉ + 1) − 1)݊ +  where  ,( = ቔଶ

ቕ, 

and the equality holds if and only if the difference of the degrees of any two vertices of 
graph ܩ is at most one.  
 
Theorem 3.12 Let ܩ be a graph with ݊ vertices, ݉ edges and the minimum vertex degree 
  Then .ߜ

 ଶܯଵ(ܩ) ≥ ଷఋ
ଶ

4݉) − )݊ + 1)),  where = ቔଶ

ቕ,  (3.6) 

and the equality holds if and only if ܩ is a regular graph.  
 
Proof. 

 ଶܯଵ(ܩ) = ∑  ௨௩௪∈ாమ(ீ) (ݑ)ீ݀] + (ݒ)ீ݀ +  [(ݓ)ீ݀
 ≥ ∑  ௨௩௪∈ாమ(ீ)  (3.7) ߜ3

 = ݉−)ߜ3 + ଵ
ଶ
 ((ܩ)ଵܯ

 ≥ ݉−)ߜ3 + ଵ
ଶ

2)2݉) + 1) − 1)݊ +  (3.8) (((

 = ଷఋ
ଶ

4݉) − )݊ + 1)). 
 The relations (3.7) and (3.8) were obtained by taking into account ݀ீ(ݒ) ≥  for ߜ
each vertex ݒ ∈  and Lemma 3.11, respectively. The equality in (3.6) holds if and (ܩ)ܸ
only if the equalities (3.7) and (3.8) hold, i.e., ݀ீ(ݒ) ≥ ݒ for each vertex ߜ ∈  ܩ and (ܩ)ܸ
is a regular graph from Lemma 3.11. 
 
4. THE SECOND ORDER FIRST ZAGREB INDICES OF SPECIAL FAMILIES 

OF GRAPH 
 

Let  and ݍ denote the number of squares in a row and the number of rows of squares, 
respectively in the 2ܦ-lattice, nanotube and nanotours of ܷܶܥସ]଼ܥ,  ,see Figure 3 (a) ,[ݍ
(b) and (c), where  = 4 and ݍ = 3. In [29, 30], Ranjini et al. presented explicit formulas 
for computing the Shultz index and Zagreb indices of the subdivision graphs of the tadpole 
ܶ, , the wheel ܹ and the ladder graph ܮ. In 2015, Su and Xu [32] calculated the general 

sum-connectivity index and co-index of the ܮ(ܵ( ܶ,)), ܮ(ܵ( ܹ)) and ܮ(ܵ(ܮ)). In [20], 
Nadeem et al. derived some exact formulas for computing ܥܤܣସ and ܣܩହ indices of the 
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line graphs of the tadpole ܶ, , the wheel ܹ and the ladder graph ܮ by using the notion 
of subdivision. Recently, authors in [1, 15, 21] obtained the expressions for certain 
topological indices of line graphs of subdivision graphs of 2ܦ-lattice, nanotube and 
nanotorus of ܷܶܥସ]଼ܥ,  For more information on nanostructures, we refer the articles .[ݍ
[7, 8, 9, 10, 11]. 

 
Figure 4: (a) 2D-lattice of ܷܶܥସ[4,3]଼ܥ; (b) ܷܶܥସ[4,3]଼ܥ nanotube; (c) ܷܶܥସ[4,3]଼ܥ 
nanotorus.  
 

 
Figure 5: (a) Subdivision graph of 2D-lattice of ܷܶܥସ[4,3]଼ܥ; (b) line graph of the 
subdivision graph of 2D-lattice of ܷܶܥସ[4,3]଼ܥ.  

 
Lemma 4.1 [21]  Let ܣ be the line graph of the subdivision graph of 2ܦ-lattice of 
,]଼ܥସܥܷܶ (ܣ)ଵܯ Then .[ݍ = ݍ108 − 38 − (ܣ)ܨ ,ݍ38 = ݍ324 − 130 −  and ݍ130
(ܣ)ଶܯ = ݍ162 − )67 + (ݍ + 4.  

 
From Lemma 4.1 and Theorem 3.1, we can immediately get the following result. 

 
Theorem 4.2  Let ܣ be the line graph of the subdivision graph of 2ܦ-lattice of 
,]଼ܥସܥܷܶ (ܣ)ଵܯThen ଶ .[ݍ = ݍ324 − 142 − ݍ142 + 8. 
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Figure 6: (a) Subdivision graph of ܷܶܥସ[4,3]଼ܥ of nanotube; (b) line graph of the 
subdivision graph of ܷܶܥସ[4,3]଼ܥ of nanotube.  
 
Lemma 4.3 [21]  Let ܤ be the line graph of the subdivision graph of ܷܶܥସ]଼ܥ,  [ݍ
nanotube. Then ܯଵ(ܤ) = ݍ108 − (ܤ)ܨ ,38 = ݍ324 − (ܤ)ଶܯ and 130 = ݍ162 −
 .67

The following result is immediate from Lemma 4.3 and Theorem 3.1. 
 
Theorem 4.4  Let ܤ be the line graph of the subdivision graph of ܷܶܥସ[ݍ,]଼ܥ nanotube. 
Then ଶܯଵ(ܤ) = ݍ324 −  .142
 

 
Figure 7: (a) Subdivision graph of ܷܶܥସ[4,3]଼ܥ of nanotorus; (b) line graph of the 
subdivision graph of ܷܶܥସ[4,3]଼ܥ of nanotorus.  

 
Theorem 4.5  Let ܥ be the line graph of the subdivision graph of ܷܶܥସ[ݍ,]଼ܥ nanotorus. 
Then ଶܯଵ(ܥ) =  .ݍ324
 
Proof. The subdivision graph of ܷܶܥସ[ݍ,]଼ܥ nanotorus and the graph ܥ are shown in 
Figure 6 (a) and (b). The graph ܥ is 3-regular with 12ݍ vertices. By Theorem 3.5, we get 
required result.  
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Lemma 4.6 [30, 32]  (i) Let ܺ be the line graph of the subdivision graph of the tadpole 
graph ܶ, . Then ܯଵ(ܺ) = 8݊ + 8݇ + (ܺ)ܨ ,12 = 16݊ + 16݇ + 50 and ܯଶ(ܺ) = 8݊ +
8݇ + 23. 
(ii) Let ܻ be the line graph of the subdivision graph of the wheel graph with order ݊ + 1. 

Then ܯଵ(ܻ) = ݊ଷ + (ܻ)ܨ ,27݊ = ݊ସ + 81݊ and ܯଶ(ܻ) = ݊(
యିమାାଶ

ଶ
). 

(iii) Let ܼ be the line graph of subdivision graph of a ladder graph with order ݊. Then 
(ܼ)ଵܯ = 54݊ − (ܼ)ܨ ,76 = 162݊ − 260 and ܯଶ(ܼ) = 81݊ − 132. 

 
From Lemma 4.6 and Theorem 3.1, we can immediately get the following result. 

 
Theorem 4.7  (i) Let ܺ be the line graph of the subdivision graph of the tadpole graph 
ܶ, . Then ଶܯଵ(ܺ) = 12݊ + 12݇ + 53. 

(ii) Let ܻ be the line graph of the subdivision graph of the wheel graph with order ݊ + 1. 
Then ଶܯଵ(ܻ) = 

ଶ
(3݊ଷ − 5݊ଶ + 12݊ + 144). 

(iii) Let ܼ be the line graph of subdivision graph of a ladder graph with order ݊. Then 
ଶܯଵ(ܼ) = 162݊ − 280. 
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