A numerical study of fractional order reverse osmosis desalination model using Legendre wavelet approximation

Document Type: Research Paper


1 Department of Mathematics and Computer Science Faculty of Science and Computer Science University of Mostaganem Mostaganem Algeria

2 Department of Chemical Processes Faculty of Engineering Abdelhamid Ibn Badis University, Mostaganem, Algeria


The purpose of this study is to develop a new approach in modeling and simulation of a reverse osmosis desalination system by using fractional differential equations. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. Examples are developed to illustrate the fractional differential technique and to highlight the broad applicability and the efficiency of this method. The fractional derivative is described in the Caputo sense.


Main Subjects

[1] A. Abbas, Model predictive control of a reverse osmosis desalination unit, Desalin.
194 (2006) 268−280.
[2] B. Absar and O. Belhamiti, Modeling and computer simulation of a reverse osmosis
desalination plant-case study of Bousfer plant-Algeria, Desalin. Water Treat. 51 (2013)
[3] B. Absar, S. E. M. L. Kadi and O. Belhamiti, Reverse osmosis modeling with the
orthogonal collocation on finite element method, Desalin. Water Treat. 21 (2010)

[4] M. G. Marcovecchio, P. A. Aguirre and N. J. Scenna, Global optimal design of reverse
osmosis networks for seawater desalination: modeling and algorithm, Desalin. 184
(2005) 259−271.
[5] H. J. Oh, T. M. Hwang and S. Lee, A simplified simulation model of RO systems for
seawater desalination, Desalin. 238 (2009) 128−139.
[6] N. Ablaoui-Lahmar and O. Belhamiti, Numerical study of convection-reactiondiffusion
equation by the Legendre wavelet finite difference method. Adv. Nonlinear
Var. Inequal. 19 (2016) (2) 94−112.
[7] H. Ali Merina and O. Belhamiti, Simulation Study of Nonlinear Reverse Osmosis
Desalination System Using Third and Fourth Chebyshev Wavelet Methods. MATCH
Commun. Math. Comput. Chem. 75 (2016) 629−652.
[8] A. Atangana and A. A. Secer, Note on fractional order derivatives and table of
fractional derivatives of some special functions, Abstr. Appl. Anal. 2013 (2013) 1−8.
[9] O. Belhamiti, A new approach to solve a set of nonlinear split boundary value
problems, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 555−565.
[10] M. Caputo, Linear model of dissipation whose Q is almost frequency independent − II,
Geophys. J. R. Astron. Soc. 13 (1967), 529−539.
[11] M. Du, Z. Wang and H. Hu, Measuring memory with the order of fractional
derivative, Sci. Rep. 3 (2013) 1−3.
[12] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of
dengue fever, Nonlinear Dyn. 71 (2013) 613−619.
[13] F. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations
of Fractional Order, in Fractals and Fractional Calculus in Continuum Mechanics,
Series CISM Courses and Lecture Notes, Springer Verlag, Wien, 378 (1997), 223−276.
[14] M. Hamou Maamar and O. Belhamiti, New (0,2) Jacobi multi-wavelets adaptive
method for numerical simulation of gas separations using hollow fiber membranes,
Commun. Appl. Nonlinear Anal. 22 (2015) 3, 61−81.
[15] H. A. Jalab and R. W. Ibrahim, Texture enhancement for medical images based on
fractional differential masks, Discrete Dyn. Nat. Soc. 2013, Article ID 618536, (2013),
10 pages.
[16] H. A. Jalab and R. W. Ibrahim, Texture enhancement based on the Savitzky-Golay
fractional, differential operator, Math. Probl. Eng. 2013, Article ID 149289, (2013), 8
[17] A. A. Kilbas and S. A. Marzan, Nonlinear differential equation with the caputo
fraction derivative in the space of continuously differentiable functions, Differ. Equ. 41
(2005) 84−89.

[18] J. Klafter, S. C. Lim and R. Metzler, Fractional Dynamics. Recent Advances, World
Scientific, Singapore, (2011).
[19] A. D. Khawajia, I. K. Kutubkhanaha and J. M. Wieb, Advances in seawater
desalination technologies. Desalin. 221 (2008) 47−69.
[20] K. Hakiki and O. Belhamiti, A dynamical study of fractional order obesity model by a
combined Legendre wavelet method, submited, (2016).
[21] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential
equations, Nonlinear Anal. (2008), 2677−2682.
[22] Y. Q. Liu and J. H. Ma, Exact solutions of a generalized multi-fractional nonlinear
diffusion equation in radical symmetry, Commun. Theor. Phys. 52 (2009) 857−861.
[23] J. Lu and G. A. Chen, Note on the fractional-order Chen system, Chaos, Solitons and
Fractals 27 (2006) 685−688.
[24] C. Qing−li, H. Guo and Z. A. Xiu−qiong, Fractional differential approach to low
contrast image enhancement, Int. J. Knowledge Lang. Proces. 3 (2012) 20−29.
[25] M. Rehman and R. A. Khan, The Legendre wavelet method for solving fractional
differential equations, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 4163−4173.
[26] M. Razzaghi and S. Yousefi, Legendre wavelets direct method for variational
problems, Math. Comput. Simul. 53 (2000) 185−192.
[27] C. H. Wang, On the generalization of Block Pulse Operational matrices for fractional
and operational calculus, J. Frankin Inst. 315 (1983) 91−102.
[28] C. S. Slater, Development of a simulation model predicting performance of reverse
osmosis batch systems, Separa. Sci. Techno. 27 (1992) 1361−1388.
[29] C. S. Slater, J. M. Zielinski, R. G. Wendel and C. G. Uchrin, Modeling of small scale
reverse osmosis systems, Desalin. 52 (1985) 267−284.
[30] V. M. Starov, J. Smart and D. R. Lloyd, Performance optimization of hollow fiber
reverse osmosis membranes, Part I. Development of theory, J. Membrane Sci. 103
(1995) 257−270.
[31] J. Smart, V. M. Starov and D.R. Lloyd, Performance optimization of hollow fiber
reverse osmosis membranes. Part II. Comparative study of flow configurations, J.
Membrane Sci. 119 (1996) 117−128.