Haghbin, A., Jafari, H. (2017). Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method. Iranian Journal of Mathematical Chemistry, 8(4), 365-375. doi: 10.22052/ijmc.2017.29095.1109

A. Haghbin; H. Jafari. "Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method". Iranian Journal of Mathematical Chemistry, 8, 4, 2017, 365-375. doi: 10.22052/ijmc.2017.29095.1109

Haghbin, A., Jafari, H. (2017). 'Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method', Iranian Journal of Mathematical Chemistry, 8(4), pp. 365-375. doi: 10.22052/ijmc.2017.29095.1109

Haghbin, A., Jafari, H. Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method. Iranian Journal of Mathematical Chemistry, 2017; 8(4): 365-375. doi: 10.22052/ijmc.2017.29095.1109

Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method

The variational iteration method(VIM) was extended to find approximate solutions of fractional chemical engineering equations. The Lagrange multipliers of the VIM were not identified explicitly. In this paper we improve the VIM by using concept of fixed point iteration method. Then this method was implemented for solving system of the time fractional chemical engineering equations. The obtained approximate solutions are compared with the numerical results in the literature to show the applicability, efficiency and accuracy of the method.

1. D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012.

2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. 3. V. Kiryakova, Generalized Fractional Calculus and Applications, Longman and John Wiley, Harlow−New York, 1994. 4. F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Frac. Calc. Appl. Anal. 15(4) (2012), 712−718. 5. A. B. Malinowska, D. F. M. Torres, Fractional calculus of variations for a combined Caputo derivative, Frac. Calc. Appl. Anal. 14 (4) (2011), 523−538. 6. K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York and London, 1974. 7. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. 8. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. 9. J. H. He, Variational iteration method some recent result and new interpretations, J. Comput. Appl. Math. 207 (2007) 3−17. 10. H. Jafari, M. Zabihi, E. Salehpor, Application of variational iteration method for modified Camassa−Holm and Degasperis−Procesi equations, Numer. Meth. Part. D. E. 26 (5) (2010) 1033−1039. 11. H. Jafari, A. Kadem, D. Baleanu, T. Yilmaz, Solutions of the fractional Davey− Stewartson equations with variational iteration method, Rom. Rep. Phys. 64 (2) (2012) 337−346. 12. S. Momani, Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Soliton. Fract. 31 (2007) 1248−1255. 13. A. M. Wazwaz, A comparison between the variational iteration method and Adomian decomposition method, J. Comput. Appl. Math. 207 (2007) 129−136. 14. V. Daftardar−Gejji, H. Jafari, Adomian decomposition: A tool for solving a system of fractional differential equations, J. Math. Anal. Appl. 2 (2005) 508−518.

15. S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput. 182 (2006) 1083−1092. 16. H. Jafari, A comparison between the variational iteration method and the successive approximations method, App. Math. Letters 32 (2014) 1−5. 17. A. S. Khuri, A. Sayfy, Variational iteration method: Green's functions and fixed point iterations perspective, Appl. Math. Letters 32 (2014) 28−34. 18. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993. 19. K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. 20. M. Caputo, Linear models of dissipation whose Q is almost frequency independent. Part II, J. Roy. Astr. Soc. (1967) 529−539. 21. M. Inokuti, H. Sekine, T. Mura, General use of the Lagrange multiplier in nonlinear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Method in Mechanics of Solids, Pergamon Press, Oxford, 1978, pp. 156−162. 22. D. D. Ganji, M. Nourollahi, E. Mohseni, Application of He's method to nonlinear chemistry problems, Comp. Math. Appl. 54 (2007) 1122−1132. 23. N. Alam Khan, A. Ara, A. Mahmood, Approximate solution of time-fractional chemical engineering equations: A comparative study, Int. J. Chem. Reactor Eng. 8 (2010) Article A19.