The ratio and product of the multiplicative Zagreb‎ ‎indices

Document Type: Research Paper

Author

Imam Khomeini international university

Abstract

‎The first multiplicative Zagreb index $\Pi_1(G)$ is equal to the‎ ‎product of squares of the degree of the vertices and the second‎ ‎multiplicative Zagreb index $\Pi_2(G)$ is equal to the product of‎
‎the products of the degree of pairs of adjacent vertices of the‎ ‎underlying molecular graphs $G$‎. ‎Also‎, ‎the multiplicative sum Zagreb index $\Pi_3(G)$ is equal to the product of‎ ‎the sums of the degree of pairs of adjacent vertices of $G$‎. ‎In‎ ‎this paper‎, ‎we introduce a new version of the multiplicative sum‎ ‎Zagreb index and study the moments of the ratio and product of ‎all above‎ indices in a randomly chosen molecular graph with tree structure of order $n$. ‏Also, a ‎supermartingale is introduced by ‎‎Doob's supermartingale‎ ‎inequality.

Keywords

Main Subjects


1. R. B. Ash, C. A. Doléans-Dade, Probability and Measure Theory, Second Edition,
Academic Press, 2000.
2. M. Eliasi, A. Iranmanesh, and I. Gutman, Multiplicative versions of first Zagreb
index, MATCH Commun. Math. Comput. Chem. 68 (2012) 217−230.
3. M. Ghorbani, M. Songhori, Computing Multiplicative Zagreb Indices with respect
to Chromatic and Clique Numbers, Iranian J. Math. Chem. 5 (1) (2012) 11−18.
4. M. Ghorbani, N. Azami, Note on multiple Zagreb indices, Iranian J. Math. Chem. 3
(2) (2012) 137−143.
5. I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (4) (2013)
351−361.
6. I. Gutman, Multiplicative Zagreb indices of trees, Bull. Internat. Math. Virt. Inst. 1
(2011) 13−19.
7. A. Iranmanesh, M. A. Hosseinzadeh, and I. Gutman, On multiplicative Zagreb
indices of graphs, Iranian J. Math. Chem.3(2) (2012), 145−154.
8. R. Kazemi, Probabilistic analysis of the first Zagreb index, Trans. Comb. 2 (2)
(2013) 35−40.
9. R. Kazemi, The eccentric connectivity index of bucket recursive trees, Iranian J.
Math. Chem. 5 (2) (2014) 77−83.
10. R. Kazemi, The second Zagreb index of molecular graphs with tree structure,
MATCH Commun. Math. Comput. Chem. 72 (2014) 753−760.
11. R. Kazemi, Note on the multiplicative Zagreb indices, Discrete Appl. Math. 198 (1)
(2016) 147−154.
12. R. Kazemi, A. Fallah, Analysis on some degree-based topological indices, J. of Sci.
Math. Issue 25 (98.2) (2016) 15−24.
13. J. Liu, Q. Zhang, Sharp upper bounds for multiplicative Zagreb indices, MATCH
Commun. Math. Comput. Chem. 68 (2012), 231−240.

14. T. Réti, I. Gutman, Relations between ordinary and multiplicative Zagreb indices,
Bull. Internat. Math. Virt. Inst. 2 (2012) 133−140.
15. R. Todeschini, D. Ballabio, and V. Consonni, Novel molecular descriptors based on
functions of new vertex degrees, in: I. Gutman, B. Furtula (Eds.), Novel Molecular
Structure Descriptors Theory and Applications I, Univ. Kragujevac, Kragujevac,
(2010) 72−100.
16. R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors
based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem.
64 (2010) 359−372.
17. S. Wang, B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl. Math.
180 (2015) 168−175.
18. K. Xu, H. Hua, A unified approach to extremal multiplicative Zagreb indices for
trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68
(2012) 241−256.