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numerical applications. 
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1. INTRODUCTION  

The radial time–independent Schrödinger equation can be written as: 
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The boundary conditions are y(0) = 0, and a second boundary condition, for large values 
of x, determined by physical considerations. Large research on the algorithmic 
development of numerical methods for the solution of the Schrödinger equation has been 
done in the last decades. The aim and scope of this research is the construction of fast and 
reliable algorithms for the solution of the Schrödinger equation and related problems. 
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Mathematical models in theoretical physics and chemistry, material sciences, quantum 
mechanics and quantum chemistry, electronics etc. can be express via the above boundary 
value problem [1]. The numerical methods for the approximate solution of the 
Schrödinger equation and related problems can be divided into two main categories: 

1. Methods with constant coefficients. 
2. Methods with coefficients depending on the frequency of the problem. 

The main result of this paper is the development of an efficient multistep method for the 
numerical solution of systems of ordinary differential equations with oscillating or 
periodical solutions. The reason of their efficiency, as the analysis proved, is that the 
phase–lag and its derivatives are eliminated. Another reason of the efficiency of the new 
obtained method is that it has high algebraic order. The purpose of this paper is to extend 
the methodology for the development of numerical methods for the approximate solution 
periodic initial–value problems. The new methodology is based on the requirement of the 
phase–lag and its derivatives vanishing. Based on this new methodology we will develop 
a method one will have phase–lag and its first, second, third and fourth derivatives 
vanishing. We will apply the new developed method on the numerical solution of the 
radial Schrödinger equation. We will study the efficiency of the new obtained methods 
via: 

 A comparative error analysis, 
 A comparative stability analysis and finally, 
 The numerical results produced from the numerical solution of the radial 

Schrödinger with application to the specific potential. 
More specifically, we will develop a family of implicit symmetric two–step Obrechkoff 
methods of twelfth algebraic order. The development of the new family of methods is 
based on the requirement of the phase–lag and its first, second, third and fourth 
derivatives vanishing. We will give a comparative error analysis and a comparative 
stability analysis in order to study the efficiency of new proposed method of the family. 
Finally, we will apply both methods to the resonance problem. This is one of the most 
difficult problems arising from the radial Schrödinger equation.  

For several decades, there has been strong interest in searching for better 
numerical methods to integrate first order and second–order initial value problems, 
because these problems are usually encountered in celestial mechanics, quantum 
mechanical scattering theory, theoretical physics and chemistry, and electronics. 
Computational methods involving a parameter proposed by Gautschi [8], Jain et al. [13] 
and Steifel and Bettis [24] yield numerical solution of problems of class (1). Chawla et al. 
[3, 4], Ananthakrishnaiah [1], Shokri and et al. [17, 18,19], Dahlquist [5], Asadzadeh [2], 
Franco [6], Lambert and Watson [14], Simos and et al. [20, 21, 22], Saldanha and Achar 
[16], and Daele and Vanden Berghe [26] have developed methods to solve problems of 
class (2). Consider the class of Obrechkoff methods of the form 
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for the numerical integration of the problem (1). The method (2) is symmetric when 
,,2,1,0,, kjjkjjkj    and it is of order q if the truncation error associated with 

the linear difference operator is given as 
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where Cq+2 is a constant dependent on h. We have organized the paper as follows: In 
Section 2 we present the theory of the new methodology. In Section 3 we present the 
development of the new method. A comparative error analysis is presented in Section 4. 
Finally, the numerical results are presented in Section 5. 
 
2. PRELIMINARIES 

In order to define the interval of periodicity of a method the periodic stability analysis of 
this method is very important. The interval of periodicity defines the step size which can 
be used in order the approximation of the solution of problems with high oscillatory or 
periodic solution to be of the same order as the algebraic order of the method. It can be 
seen that when we have a large interval of periodicity then we can have a large step size 
for the same accuracy. To investigate the stability properties of methods for solving the 
initial value problem (l), Lambert and Watson [14] introduced the scalar test equation. 
From the form (2) and without loss of generality we assume 

  ,2 yy ℝ.                                                              (3) 

and the interval of periodicity, where w is defined as the frequency of the problem and 
may be a constant. When we apply a symmetric two–step method to the scalar test 
equation (3), we obtain a difference equation of the form 

,0)(2 11   nnn yyCy                                                      (4) 
where h  , h is the step length, )(/)()(  ABC   where )(A  and )(B  are 

polynomials in  and ny  is the computed approximation to )(nhy , ,...2,1,0n . The 
characteristic equation associated with (4) is 

.01)(22   C                                                        (5) 
We have the following definitions. 
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Definition 2.1. (See [25]). The method of Eq. (4) with the characteristic Eq. (5) is 
unconditionally stable if 1|| 1   and 1|| 1   for all values of h . 
 

Following Lambert and Watson [14], we say that the numerical method (4) has an 
interval of periodicity  2

0,0  , if for all  2
0,0   , 1  and 2  satisfy ))(exp(1  i , and

)),(exp(2  i  where )(  is a real function of v. For any method corresponding to 
the characteristic equation (4) the phase–lag is defined as the leading term in the 
expansion of 

 .)(cos)( 1  Ct                                              (6) 

If the quantity  1 qOt   as 0 , the order of phase–lag is q. 
 
Definition 2.2. Suppose (5) is the characteristic equation of (4), and 

,1|)(| C  .,0 2
0

2    

Then the periodicity interval of the method is  2
0,0  . 

 
Definition 2.2. The method (4) is said to be P–stable if its interval of periodicity is ),0( 
. 
 
Theorem 2.4. (See Ibraheem and Simos [10]) The phase–lag of a symmetric two–step 
method with characteristic equation given by (5) is the leading term in the expansion of 

 .)cos()(
2

 C  

3. DEVELOPMENT AND ANALYSIS 

From the form (2) and without loss of generality we assume 
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When 3m we get 
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3M  for method (8) is 11 so that if 1P , 13K we obtain classic method and the 
coefficients of this method are 

,
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where its phase–lag is given by 

,1412
3280003394722659

45469

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and its local truncation error is given by 

).(
6640001697361329

45469 1614)14( hOhyLTE clas   

If 6P , 1K  then we obtain the method with zero phase–lag ),(PL  and the 
coefficients of this case are given in [16]. 

 
3.1. DEVELOPMENT 

Application of the method (8) to the scalar test equation (3) leads to the difference 
equation (4) with  2C  given by 

  6
30
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We require the above mentioned method to have the phase–lag and its derivatives 
vanished. Using the Eq. (10) and Theorem 2.4, and requiring the above method (8) to 
have the maximum algebraic order with five free parameters, the following relations are 
obtained: 

.
2
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So the phase–lag is equal to: 
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We require the above mentioned method to have the phase–lag and some of its derivatives 
vanished. Hence we can write 

.4,3,2,1,0,0)(  iPL i
 

Demanding the phase–lag and the first, second, third and fourth derivatives of the phase 
to vanish we can find of all coefficients. For small values of ||  in the coefficients, are 
subject to heavy cancelations. In this case the following Taylor series expansions should 
be used:  
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where h  ,   is the frequency and h is the step length. As 0 , the LTE of the 
method (8) with above derived coefficients, tends to 
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which agrees with the LTE of the three methods due to Wang [27], Simos [20] and Daele 
[26], Achar [1], as 0H . The characteristic equation 
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i.e. when 0)()( 2   BA . Substituting for )(A  and )(B  for new method, the interval 
of periodicity of the classical Obrechkoff method, PL′ and PL′′ methods [18], the new 
method when 0 are obtained [0, 25.2004], [0,408.04], [0, 1428.84] and [0, 6593.44] 
respectively. The behaviors of the coefficients are given in Figures 1, 2 and 3. 

 
4. COMPARATIVE ERROR ANALYSIS 

We will study the following methods: 
 The ten–step tenth algebraic order method developed by Quinlan and Tremaine 

[15] which is indicated as QT10. 
 The twelve–step twelfth algebraic order method developed by Quinlan and 

Tremaine [15] which is indicated as QT12. 
 The classical two–step method of the family of methods mentioned in Section 3 of 

this paper which is indicated as CL2. 
 The classical ten–step method of the family of methods mentioned in paragraph 3 

of [9] which is indicated as CL10 
 The method with vanished phase–lag produced by Alolyan and Simos [10] which 

is indicated as PF. 
 The ten–step predictor–corrector method produced by Shokri [17] which is 

indicated as PC. 
 High phase–lag order trigonometrically fitted two–step Obrechkoff produced by 

Shokri [18] which is indicated as TFO. 
 The method with vanished phase–lag and its first derivative produced by Alolyan 

and Simos [10] which is indicated as PFDF. 
 The ten–step method with phase–lag and its first and second derivatives equal to 

zero produced by Alolyan and Simos [9] which is indicated as PFDF12. 
 The ten–step method with phase–lag and its first, second and third derivatives 

equal to zero produced by Alolyan and Simos [9] which is indicated as PFDF123. 
 The new developed two–step Obrechkoff method with vanished phase–lag and its 

first, second, third and fourth derivatives obtained in this paper which is indicated 
as new. 
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Figure 1: Behavior of the coefficients 10 and 11 in the new method. 
 

 

 
 

Figure 2: Behavior of the coefficients 20 and 21 in the new method. 
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Figure 3: Behavior of the coefficients 30 and 31 in the new method. 

 
From the above equations we have the following theorem: 

 
Theorem 4.1. For the numerical solution of the time independent radial Schrödinger 
equation the new proposed method produced in this paper is the most accurate method, 
especially for large values of |||| EVG C  . 
 
Proof. The radial time independent Schrödinger equation is of the form 

)()('' xyxfy                                                           (12) 
Based on the paper of Ixaru and Rizea [12], the function f(x) can be written in the form 

Gxgxf  )()( , where gVxVxg C  )()( , and CV  is the constant approximation of the 

potential and EVG C  2 . We express the derivatives )(i
ny , ,...4,3,2i  which are 

terms of the local truncation error formulae, in terms of Eq. (12). The expressions are 
presented as polynomials of G . Finally, we substitute the expressions of the derivatives, 
produced in the previous step, into the local truncation error formulae. We use the 
procedure mentioned above and the formulae: 
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We consider two cases in terms of the value of E : 
1. The energy is close to the potential, i.e. 0 EVG C . So only the free terms of 

the polynomials in G are considered. Thus for these values of G , the methods are of 
comparable accuracy. This is because the free terms of the polynomials in G , are 
the same for the cases of the classical method and of the new developed methods. 

2. G  or 0G . Then || G  is a large number. 
So, we have the following asymptotic expansions of the equations produced from the Local 
Truncation Errors and based on the above procedure: 

a. The ten–step tenth algebraic order method developed by Quinlan and Tremaine 
[15], for the analysis of the local truncation error see [11] 

....)(
912384
52559 612

10 



  GxyhLTEQT                                              (14) 

b. The twelve–step twelfth algebraic order method developed by Quinlan and 
Tremaine [15], for the analysis of the local truncation error see [11] 

....)(
002905943040
31630179610 714

14 



  GxyhLTEQT                                     (15) 

c. The classical two–step Obrechkoff method with 3m  which is indicated as CL2 

....)(
6640001697361329

45469 714
2 



  GxyhLTECL                                  (16) 

d. The classical ten–step method of the family 1, [9] which is indicated as CL10  

....)(
003736212480

547336457 714
10 



  GxyhLTECL                                      (17) 

e. The method with vanished phase–lag produced by Alolyan and Simos [10] which 
is indicated as PF 
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....)()(
003736212480

547336457 614




  GxyxghLTEPF                                   (18) 

f. The ten–step predictor–corrector method produced by Shokri [17] which is 
indicated as PC 

 

....)()(
65600004734528454

76919650646932 614




  GxyxghLTEPC                             (19) 

g. High phase–lag order trigonometrically fitted two–step Obrechkoff  PL′′ produced 
by Shokri [18] which is indicated as TFO 

....)()(
6640001697361329

45469 614




  GxyxghLTETFO                             (20) 

h. The method with vanished phase–lag and its first derivative produced by Alolyan 
and Simos [9] which is indicated as PFDF 

 
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hLTEPFDF
(21) 

i. The method with vanished phase–lag and its first and second derivatives produced 
by Alolyan and Simos [9] which is indicated as PFDF12. 

....)()(
01779148800

547336457 5
2

2
14
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
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


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
 Gxyxg

dx
dhLTE PFDF

                            (22) 

j. The method with vanished phase–lag and its first, second and third derivatives 
produced by Alolyan and Simos [9] which is indicated as PFDF123. 
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(23) 
 

k. The new two–step Obrechkoff method with phase–lag and its first, second, third 
and fourth derivatives equal to zero obtained in this paper which is indicated as 
new: 

....)()(
040001060850831

45469 4
4

4
14


















 Gxyxg

dx
dhLTENew                       (24) 
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 Based on the analysis presented above ,  we studied the interval of  periodicity of the eight 
methods mentioned in the previous  paragraph .  The results are presented in Table 1 . 
 

Method  Interval of periodicity 
QT10 
QT12 
CL2 
CL12 
PF(see [10]) 
PC (see [17]) 
TFO (see PL'' in [18]) 
PFDF (see [9]) 
PFDF12(see [9]) 
PFDF (see [9]) 
New method 

(0,0.17) 
(0,0.046) 
(0,25.2004) 
(0,0.8) 
(0,1.2) 
(0,9.89) 
(0,1428.84) 
(0,1.5) 
(0,6.6) 
(0,3.6) 
(0,65559993.44) 

 
Table 1: Comparative interval of periodicity for the methods mentioned in Section 4. 

 
  Hence for the classical two–step Obrechkoff methods ,  the error  increases as the 
seventh power of G  .  For the classical ten–step  methods ,  the error increases as the seventh 
power of G  .  For the  method with vanished phase–lag produced by Alolyan and Simos [10] , 
 the error increases as the sixth power of G  .  For  ten–step predictor–corrector method 
produced by Shokri [17] ,  the error increases as the sixth power of G .  For two–step 
twelfth  order Obrechkoff method produced by Shokri [18] ,  the error  increases as the sixth 
power of G  .  For twelfth order method with   vanished phase–lag and its first derivative 
produced by Alolyan and   Simos [9] ,  the error increases as the fifth power of G.  For   ten-step 
twelfth order method with vanished phase–lag and its first  and second derivatives produced 
by Alolyan and Simos [9] ,  the error increases as the fifth power of G  .  For ten–step 
twelfth  order method with vanished phase–lag and its first ,  second and third  derivatives 
produced by Alolyan and Simos [9] ,  the error  increases as the fourth power of G  .  For the 
new two–step   Obrechkoff method with vanished phase–lag and its first ,  second , third and 
fourth derivatives obtained in this paper ,  the error  increases as the fourth power of G  but it 
has lower coefficients than the method developed in [9] .  So ,  for the numerical  solution of the 
time–independent radial Schrödinger equation the  new obtained two–step Obrechkoff 
method with vanished phase–lag and  its derivatives is the most accurate ones ,  especially for 
large  values of EVG C   .                                                                                                   
 

  Remark 4.2. In  Figures    4 , 5 ,    we present the s plane  and  behavior of stability  
polynomial (respectively)   for the method   developed in this paper ( s is frequency of test 
problem and  is frequency of method) . 
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Figure 4: The stability region for the new method. 

For the solution of the Schrödinger equation the frequency of   the exponential fitting 
is equal to the frequency of the scalar test   equation .  So ,  it is necessary to observe the 
surroundings of the   first diagonal of the s  plane . 
 
5. NUMERICAL RESULTS 

5.1 THE METHODS 
 

We have used several multistep methods for the integration of the five test problems. These 
methods are 

 The ten–step tenth algebraic order method developed by Quinlan and Tremaine [15] 
which is indicated as Method I. 

 The twelve–step twelfth algebraic order method developed by Quinlan and 
Tremaine [15] which is indicated as Method II. 

 The ten–step method with phase–lag and its first and second derivatives equal to 
zero obtained in [9] which is indicated as Method III. 

 The ten–step method with phase–lag and its first, second and third derivatives equal 
to zero obtained in [9] which is indicated as Method IV. 

 The ten–step predictor–corrector method produced by Shokri [17], which is 
indicated as Method V. 
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 The new method obtained in this paper which is indicated as VI. 
 

  
 

Figure 5: Behavior of the stability polynomial for the new method. 
 
5.2. THE PROBLEMS 
 
The efficiency of the new symmetric two–step Obrechkoff method will be measured 
through the integration of five initial value problems with oscillating solution. In order to 
apply the new method to the radial Schrödinger equation the value of parameter  is 
needed. For every problem of the one-dimensional Schrödinger equation given by (1) the 
parameter is given by 

ExVxq  )()( ,                                                 (25) 

where )(xV  is the potential and E  is the energy. 
 
Example 5.1. We consider the Schrödinger equation resonance problem .  We will integrate 
problem (1) with 0l  at the interval ]15,0[  using the well–known Woods–Saxon potential  

   
,exp,

11
)( 0

2
10 






 








a

xxq
q
qu

q
uxV   

where 500 u , 6.0a , 70 x , 
a
uu 0

1  .  The behavior of the Woods–Saxon  potential is 

shown in Figure 6  and with boundary condition 0)0( y  .  The potential )(xV  decays   more 
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quickly than 2
)1(

x
ll   ,  so for large x (asymptotic  region) the Schrödinger equation (1) 

becomes  

).()()1('' 2 xyExV
x
lly 






   

 

 
Figure 6: The Woods-Saxon potential. 

  
The last equation has two linearly independent solutions )(kxkxjl    and )(kxkxnl  ,  where lj  

and ln  are the spherical Bessel and   Neumann functions respectively .  When x  
the  solution of Schrödinger has the asymptotic form  
 

  ,
2

costan
2

sin

)()()(















 






 



 lkxlkxD

kxBkxnkxAkxjxy

l

ll

 

where l  is called scattering phase shift and it is  calculated by the following expression : 

 
)()()()(
)()()()(tan

11

11









iiii

iiii
l xCxyxCxy

xSxyxSxy  , 

where )()( kxkxjxS l  , )()( kxkxnxC l  and 1 ii xx  both   belong to the asymptotic region . 

 Given the energy we approximate the  phase shift ,  the accurate value of which is /2 for the 
above   problem .  

We will use for the energy the value 701916.989E  .  For   some well–known 
potentials ,  such as the Woods–Saxon potential ,  the   definition of parameter   is not given 
as a function of x  but based on some critical points which have been defined from the   
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study of the appropriate potential (see for details [12]) .  For   the purpose of obtaining our 
numerical results it is appropriate to   choose   as follows (see for details [12]) : 









].15,5.6[
],5.6,0[

,
,50

x
x

E
E  

  
Example 5.2. The almost periodic orbital problem studied by Franco and Palacios [7], can 
be described by 

Cyiyyxiyy  ,)0(',1)0(),exp(''   
or equivalently by 







1)0(',0)0(),sin(''
0)0(',1)0(),cos(''

vuxvv
uuxiuu




 

where 001.0  and 01.0 . The theoretical solution of this problem is given by 
,),()()( Rxxivxuxy                                               (26) 

where 

).sin(
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1
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






 

This system of equations has been solved for  1000,0x . For this problem we use 1 . 
 
Example 5.3. The almost periodic orbital problem studied by Stiefel and Bettis [24], can 
be described by 
 

Cyiyyixyy  ,9995.0)0(',1)0(),exp(001.0''  
or equivalently by 








.9995.0)0(',0)0(),sin(001.0''
,0)0(',1)0(),cos(001.0''

ivuxvv
uuxuu




 

The theoretical solution of this problem is given by ),()()( xivxuxy  Rvu ,  and 

).cos(0005.0)sin()(
),cos(0005.0)cos()(
xxxxv

xxxu



 

This system of equations has been solved for  1000,0x . For this problem we use 1 . 
 
Example 5.4. (Inhomogeneous Equation) Consider the initial value problem 

 .1000,0,11)0(,1)0(),sin(99100 '  tyyxyy
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With the exact solution    .10cos10sin)sin()( tttty   For this problem we use 1 . 
  

Example 5.5. We consider the nonlinear undamped Duffing equation 

  )12(,00',672004267280.0)0(),cos('' 3  yyxByyy 
 

where 01.1,002.0  B
 
and .

01.1
5.40,0 





x
 
We use the following exact solution for 

(27), from [23], 

 ,)12(cos)(
3

0
12


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i
i xiKxg   

where }.10374.0,10304016.0,10246946143.0,362001794775.0{},,,{ 9637531  KKKK  
 
 

 
 

Figure 7: Efficiency for the resonance problem using E = 989:701916. 
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Figure 8: Efficiency for the Franco and Palacios equation. 
 
 

 
 

Figure 9: Efficiency for the orbital problem by Stiefel and Bettis. 
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Figure 10: Efficiency for the inhomogeneous equation. 
 

 
 

Figure 11: Efficiency for the Duffing Equation. 
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4. CONCLUSIONS 

In Figure 7, we see the results for the resonance problem for energy 495874.989E . In 
Figure 8, we see the results for the Franco–Palacios almost periodic problem, in Figure 9, 
the results for the Stiefel–Bettis almost periodic problem are present, in Figure 10, the 
results for the inhomogeneous equation are present and finally in Figure 11, we see the 
results for the Duffing equation. 

Among all the methods used the new symmetric two–step Obrechkoff method with 
twelfth algebraic order and vanished some of its derivatives was the most efficient. 
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