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A new two-step implicit linear Obrechkoff twelfth algebraic order
method with vanished phase-lag and its first, second, third and
fourth derivatives is constructed in this paper. The purpose of this
paper is to develop an efficient algorithm for the approximate
solution of the one—dimensional radial Schrédinger equation and
related problems. This algorithm belongs in the category of the
multistep methods. In order to produce an efficient multistep
method the phase-lag property and its derivatives are used. An
error analysis and a stability analysis are also investigated and a
comparison with other methods is also studied. The efficiency of
the new methodology is proved via theoretical analysis and
numerical applications.
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1. INTRODUCTION

The radial time—independent Schrddinger equation can be written as:
" I(1+1

y (x){ L )+V(x)—Ejy(x), &
The boundary conditions are y(0) = 0, and a second boundary condition, for large values
of x, determined by physical considerations. Large research on the algorithmic
development of numerical methods for the solution of the Schrédinger equation has been
done in the last decades. The aim and scope of this research is the construction of fast and
reliable algorithms for the solution of the Schrédinger equation and related problems.
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Mathematical models in theoretical physics and chemistry, material sciences, quantum
mechanics and quantum chemistry, electronics etc. can be express via the above boundary
value problem [1]. The numerical methods for the approximate solution of the
Schrddinger equation and related problems can be divided into two main categories:

1. Methods with constant coefficients.

2. Methods with coefficients depending on the frequency of the problem.
The main result of this paper is the development of an efficient multistep method for the
numerical solution of systems of ordinary differential equations with oscillating or
periodical solutions. The reason of their efficiency, as the analysis proved, is that the
phase—lag and its derivatives are eliminated. Another reason of the efficiency of the new
obtained method is that it has high algebraic order. The purpose of this paper is to extend
the methodology for the development of numerical methods for the approximate solution
periodic initial-value problems. The new methodology is based on the requirement of the
phase—lag and its derivatives vanishing. Based on this new methodology we will develop
a method one will have phase-lag and its first, second, third and fourth derivatives
vanishing. We will apply the new developed method on the numerical solution of the
radial Schrodinger equation. We will study the efficiency of the new obtained methods
via:

e A comparative error analysis,

e A comparative stability analysis and finally,

e The numerical results produced from the numerical solution of the radial

Schrodinger with application to the specific potential.

More specifically, we will develop a family of implicit symmetric two—step Obrechkoff
methods of twelfth algebraic order. The development of the new family of methods is
based on the requirement of the phase-lag and its first, second, third and fourth
derivatives vanishing. We will give a comparative error analysis and a comparative
stability analysis in order to study the efficiency of new proposed method of the family.
Finally, we will apply both methods to the resonance problem. This is one of the most
difficult problems arising from the radial Schrédinger equation.

For several decades, there has been strong interest in searching for better
numerical methods to integrate first order and second—order initial value problems,
because these problems are usually encountered in celestial mechanics, quantum
mechanical scattering theory, theoretical physics and chemistry, and electronics.
Computational methods involving a parameter proposed by Gautschi [8], Jain et al. [13]
and Steifel and Bettis [24] yield numerical solution of problems of class (1). Chawla et al.
[3, 4], Ananthakrishnaiah [1], Shokri and et al. [17, 18,19], Dahlquist [5], Asadzadeh [2],
Franco [6], Lambert and Watson [14], Simos and et al. [20, 21, 22], Saldanha and Achar
[16], and Daele and Vanden Berghe [26] have developed methods to solve problems of
class (2). Consider the class of Obrechkoff methods of the form
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k Lk .
20 = 20D By Wi (2
j=0 j=0

i=1
for the numerical integration of the problem (1). The method (2) is symmetric when
a;=a,_;,B;=pB_; ] =012k, and it is of order g if the truncation error associated with

the linear difference operator is given as
TE =C,,h™?y@?  x . <n<x

q+2 n+1?

where Cg+2 is a constant dependent on h. We have organized the paper as follows: In
Section 2 we present the theory of the new methodology. In Section 3 we present the
development of the new method. A comparative error analysis is presented in Section 4.
Finally, the numerical results are presented in Section 5.

2. PRELIMINARIES

In order to define the interval of periodicity of a method the periodic stability analysis of
this method is very important. The interval of periodicity defines the step size which can
be used in order the approximation of the solution of problems with high oscillatory or
periodic solution to be of the same order as the algebraic order of the method. It can be
seen that when we have a large interval of periodicity then we can have a large step size
for the same accuracy. To investigate the stability properties of methods for solving the
initial value problem (I), Lambert and Watson [14] introduced the scalar test equation.
From the form (2) and without loss of generality we assume

y'=-0’y, weR. (3)

and the interval of periodicity, where w is defined as the frequency of the problem and
may be a constant. When we apply a symmetric two-step method to the scalar test
equation (3), we obtain a difference equation of the form

Yo —2C(V)Y, + ¥, =0, (4)
where v =wh, his the step length, C(v) =B(v)/A(v) where A(v) and B(v) are
polynomials in v and Yy, is the computed approximation to y(nh),n=012,.... The
characteristic equation associated with (4) is

c2-2Cc()¢ +1=0. 5)
We have the following definitions.
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Definition 2.1. (See [25]). The method of Eq. (4) with the characteristic Eq. (5) is
unconditionally stable if | £, |<1 and | ¢, |<1 for all values of wh.

Following Lambert and Watson [14], we say that the numerical method (4) has an
interval of periodicity (0,v2), if for all v € (0,v2), ¢, and ¢, satisfy ¢, = exp(i0(v)), and
¢, =exp(—i0f(v)), where 8(v) is a real function of v. For any method corresponding to

the characteristic equation (4) the phase—lag is defined as the leading term in the
expansion of

t=v—-0(v)=v—cos HC(v)]. (6)
If the quantity t = O(vq”) as v — 0, the order of phase—lag is qg.

Definition 2.2. Suppose (5) is the characteristic equation of (4), and
|C(v) k1, Vv?e (O,VOZ)
Then the periodicity interval of the method is (O,VOZ).

Definition 2.2. The method (4) is said to be P-stable if its interval of periodicity is (0,)

Theorem 2.4. (See lbraheem and Simos [10]) The phase—lag of a symmetric two-step
method with characteristic equation given by (5) is the leading term in the expansion of

[C(v) - cos(v)]
V2 .

3. DEVELOPMENT AND ANALYSIS

From the form (2) and without loss of generality we assume
. m
a; =0y i By =Pimj 1= 00—){3}
and we can write

ynﬂ B 2yn + y”’l = Z hZi [ﬁioyn+1(2i) + ﬁilyn(Zi) + ﬁioyn—l(Zi)] (7)

i=1

When m =3 we get
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Yn+1—2Yn+Yn-1= hz[ﬁlO(Ynﬂ(Z) + Yn—l(z)) + ﬂ11Yn(2)}

+h? :ﬂZO(Yn+l(4) +yna®)+ 521Yn(4)} (8)

+h0 :ﬂgo(yn+1(6) + Yn—1(6)) + ﬂ31)’n(6)} :

M —3 for method (8) is 11 so that if P =-1, K =13we obtain classic method and the
coefficients of this method are

229 3665 1
ﬁ1°_7788’ ﬁ“_3894’ P = 2360 )
5, - 711 5. - 127 5, = 2923

212080" ¥ 39251520 " 3925152
where its phase—lag is given by

plclas = — 45469 Vlz +O(V14) y

3394722659%328000

and its local truncation error is given by

LTE g, = 45469 y“ht* +0(h').

9~ 1697361329664000
If P=6, K=-1 then we obtain the method with zero phase-lag (PL), and the

coefficients of this case are given in [16].

3.1. DEVELOPMENT

Application of the method (8) to the scalar test equation (3) leads to the difference
equation (4) with C(vz) given by

1 2 1 4 1 6
1- =B v+ Bov == Pagv
C(v2)= 2711 2721 2731 (10)

L+ B = o™ + Bag®
We require the above mentioned method to have the phase-lag and its derivatives
vanished. Using the Eq. (10) and Theorem 2.4, and requiring the above method (8) to

have the maximum algebraic order with five free parameters, the following relations are
obtained:

1 1
:BlO :E_E,Bn-

So the phase-lag is equal to:
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1 1 1
1- Eﬁnvz + Eﬁz1v4 - Eﬁmve
PL = —cos(v) (v 2.

1 1
1+ (2 _Zﬁnjvz ~ Bogv" + Pogv*

We require the above mentioned method to have the phase—lag and some of its derivatives
vanished. Hence we can write

PLY =0, i=01234.
Demanding the phase—lag and the first, second, third and fourth derivatives of the phase
to vanish we can find of all coefficients. For small values of |v | in the coefficients, are
subject to heavy cancelations. In this case the following Taylor series expansions should
be used:

5 229 45469 2 24889175 4 678202459751 6
= + v - vo- v
10 7788 262829424 21492613318176 17615223060643802880
35019787379195 8 51820722922675986337 10
+ v+ v
1824591850710709359831552 1979239042857375626001274828800
640261689488085567511 12
+ 14
621981077741727283564653249884160
305831417285687021551777934669 14

+ v
11073950059127779543752189341357114253312000

3665 45469 9 24889175 4 678202459751 6
= - v+ v+ v
117 3894 131414712 10746306659088 8807611530321901440
35019787379195 8 51820722922675986337 10
- v - v
912295925355354679915776 989619521428687813000637414400
640261689488085567511 12
- v
310990538870863641782326624942080
305831417285687021551777934669 14

- v
5536975029563889771876094670678557126656000

5 1 45469 2 805517 4 441092244757 6
= - - v - v+ v
20 2360 6021183168 58616218140480 134516248826734494720
5333451495777199 8 1166381440358669133769 10
+ v+ v
41799740579918068970686464 352664411272768747905681696768000
73168428536999510080433 12
+ v
1052844333413723819997622137531187200
37396229930111340972105463871 14

+ v
30042725758494980867499958643777434361856000
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5 711 5228935 47774789 4 4726497723443 6
= - v+ v+ v
217 12080 33116507424 40298649971580 147967873709407944192
63080459663327759 8 2330989829190428205673 10
- v - v
229898573189549379338775552 387930852400045622696249866444800
12281012353250799618959 12
- v
62941780801907402282466540830668800
2468604944991863950283930434259 14
=

_-627892968352545100130749135654948378162790400

5 127 45469 2 5624977 4 14566546103957 6
= + v+ v+ v
30 39251520 305690837760 1289556799090560 143415016056810776678400
184980240090953987 8 41313447360649468349 10
+ v+ v
91959429275819751735510220800 1193633392000140377526922665984000
22457771382822810779232493 12
+ v
43777267383342636435501128478546763776000
20012234957709499586085136211 14+

+ 1%
3219963940269462051952559670025376298270720000

2923 14231797 2 26183459 4 255261508015541 6
= - v+ v o= v
317 3925152 1986990445440 257911359818112 932197604369270048409600
6643202390908931 8 768504540290345312837 10
+ v - v
9195942927581975173551022080 7758617048000912453924997328896000
2818055834584169721163 12
- 14
1152033352193227274618450749435441152
336906392707210170648185126081 14
vt

_-6976588537250501112563879285054981979586560000

hence

pL 3111088424219822024€000327708149886658237506483999939597 30
= 1%
New ™ 3706259208163314268929977306836020716126560618326079160070087321067278298400000

and

LTE _ 45469 (5w8y(6’ +10a)4y(10) +5a)zy(12) +y(14) +1Oa)6y(8) +a>1°y(4’)h“,

New 1697361329 664000

where v =wh, o is the frequency and h is the step length. As v — 0, the LTE of the
method (8) with above derived coefficients, tends to

45469 hl4y(l4) +O(h16)
169736132%6400 ’
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which agrees with the LTE of the three methods due to Wang [27], Simos [20] and Daele
[26], Achar [1], as H — 0. The characteristic equation
Qls;v?)= A(v)s? —2B(v)s + A(v) =0
has complex roots of unit magnitude when
B(v)

lcos(0(v))| = ‘m <1,

i.e. when A(v)* £B(v) >0. Substituting for A(v) and B(v) for new method, the interval

of periodicity of the classical Obrechkoff method, PL" and PL" methods [18], the new
method when v — 0 are obtained [0, 25.2004], [0,408.04], [0, 1428.84] and [0, 6593.44]
respectively. The behaviors of the coefficients are given in Figures 1, 2 and 3.

4. COMPARATIVE ERROR ANALYSIS

We will study the following methods:

e The ten-step tenth algebraic order method developed by Quinlan and Tremaine
[15] which is indicated as QT10.

e The twelve-step twelfth algebraic order method developed by Quinlan and
Tremaine [15] which is indicated as QT12.

e The classical two—step method of the family of methods mentioned in Section 3 of
this paper which is indicated as CL2.

e The classical ten—step method of the family of methods mentioned in paragraph 3
of [9] which is indicated as CL10

e The method with vanished phase—lag produced by Alolyan and Simos [10] which
is indicated as PF.

e The ten-step predictor—corrector method produced by Shokri [17] which is
indicated as PC.

e High phase-lag order trigonometrically fitted two—step Obrechkoff produced by
Shokri [18] which is indicated as TFO.

e The method with vanished phase-lag and its first derivative produced by Alolyan
and Simos [10] which is indicated as PFDF.

e The ten-step method with phase—lag and its first and second derivatives equal to
zero produced by Alolyan and Simos [9] which is indicated as PFDF12.

e The ten-step method with phase-lag and its first, second and third derivatives
equal to zero produced by Alolyan and Simos [9] which is indicated as PFDF123.

e The new developed two—-step Obrechkoff method with vanished phase—lag and its
first, second, third and fourth derivatives obtained in this paper which is indicated
as new.
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Figure 1: Behavior of the coefficients g,,and f,, in the new method.
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Figure 2: Behavior of the coefficients f,,and j,, in the new method.
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Figure 3: Behavior of the coefficients B,,and S, in the new method.

From the above equations we have the following theorem:

Theorem 4.1. For the numerical solution of the time independent radial Schrédinger
equation the new proposed method produced in this paper is the most accurate method,

especially for large values of| G ||V, —E]|.

Proof. The radial time independent Schrodinger equation is of the form

y'=f(x)y(x) (12)
Based on the paper of Ixaru and Rizea [12], the function f(x) can be written in the form
f(X)=g(x)+G, where g(x) =V(X)-V. =g, and V. is the constant approximation of the

potential and G=v* =V, -E. We express the derivatives y®, i=234,... which are
terms of the local truncation error formulae, in terms of Eq. (12). The expressions are
presented as polynomials of G. Finally, we substitute the expressions of the derivatives,
produced in the previous step, into the local truncation error formulae. We use the

procedure mentioned above and the formulae:
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v =V 0-ve + 6,
2 2
yi" {jXZV(x)}y(xm[j V(x)j[—y(x)j (V(x)vC+G{jX—2y(x)}
4 3 2 2
6 _[d° av d a” =
Yn _£dx4 (X)}y(x)+4£dx3v(x)}[dx y(X)j+3£dX2 V(X)}£dxzy(x)} (13)
4

2
+ [iV(x)j y(x)+6(v(x)—v +Gxiv(x)j[i y(X)j

42
+alv(0-vg +G 52V ® v+ 0~V +6F| < ZY(X)
X

We consider two cases in terms of the value of E :
1. The energy is close to the potential, i.e. G=V,. —E ~0. So only the free terms of

the polynomials in G are considered. Thus for these values of G, the methods are of
comparable accuracy. This is because the free terms of the polynomials in G, are
the same for the cases of the classical method and of the new developed methods.
2. G>>o0r G<<0.Then |G| is a large number.
So, we have the following asymptotic expansions of the equations produced from the Local
Truncation Errors and based on the above procedure:
a. The ten-step tenth algebraic order method developed by Quinlan and Tremaine
[15], for the analysis of the local truncation error see [11]

52559
LTEqrso = h“[— 6 }

X)G® + 14
912384 y() (14)

b. The twelve-step twelfth algebraic order method developed by Quinlan and
Tremaine [15], for the analysis of the local truncation error see [11]

16301796103
LTE =h"| - X)G" +... | 15
oria [ 290594304000 y() } (15)
c. The classical two-step Obrechkoff method with m =3 which is indicated as CL2
45469
LTE,, , =h"| - X)G' +...|. 16
o2 [ 1697361329664000 y(x) } (16)
d. The classical ten—step method of the family 1, [9] which is indicated as CL10
547336457
LTE =h"| - )G’ +...|. 17
cio [ 373621248000 y() } (17

e. The method with vanished phase—lag produced by Alolyan and Simos [10] which
is indicated as PF
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547336457 6
X)Yy(X)G” +... |. 18
3736212480009( )y } (18)
f. The ten-step predictor—corrector method produced by Shokri [17] which is
indicated as PC

LTEm::h“[—

96506469327691 6
X)V(X)G® +... | 19
47345284546560000 909y() } (19)

g. High phase-lag order trigonometrically fitted two—-step Obrechkoff PL" produced
by Shokri [18] which is indicated as TFO

45469
LTE,., =h"| - X)Y(X)G® +... |. 20
” [ 1697361329664000 V) } (20)

h. The method with vanished phase—lag and its first derivative produced by Alolyan
and Simos [9] which is indicated as PFDF

{ o 900 Jy) ) y(x)}

LTEM::h“[—

17791488000 373621248000 i 21
LTE o =h G +...[(21)
(547336457 [_ ()J_y(x)
186810624000

I.  The method with vanished phase—lag and its first and second derivatives produced
by Alolyan and Simos [9] which is indicated as PFDF12.

547336457 ( d?
LTE =h - G* 22
PFDF12 { 17791488000[dx2g( )Jy(x) i } (22)

J. The method with vanished phase-lag and its first, second and third derivatives
produced by Alolyan and Simos [9] which is indicated as PFDF123.

44 43 ]
547336457 547336457 d
17791488000[d (X%J(X)_373621248000[d 39(Xi]dxy(xi
LTEPFDF123 =h'* G4t
547336457 547336457
+[: 31135104000(dxg(x)j y09 - 233513280009(X)y(x) 2 g(x)]
‘ (23)

k. The new two-step Obrechkoff method with phase-lag and its first, second, third
and fourth derivatives equal to zero obtained in this paper which is indicated as

new:
45469 g
LTE ., = ™| - X)G* +... . 24
New { 106085083104000(d 79(x )jy() + } (24)
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Based on the analysis presented above, we studied the interval ofperiodicity of the eight
methods mentioned in the previousparagraph. The results are presented in Table 1.

Method Interval of periodicity
QT10 (0,0.17)

QT12 (0,0.046)

CL2 (0,25.2004)
CL12 (0,0.8)

PF(see [10]) 0,1.2)

PC (see [17]) (0,9.89)

TFO (see PL" in [18]) (0,1428.84)
PFDF (see [9]) (0,1.5)
PFDF12(see [9]) (0,6.6)

PFDF (see [9]) (0,3.6)

New method (0,65559993.44)

Table 1: Comparative interval of periodicity for the methods mentioned in Section 4.

Hence for the classical two-step Obrechkoff methods, the errorincreases as the
seventh power of G . For the classical ten—stepmethods, the error increases as the seventh
power of G . For themethod with vanished phase—lag produced by Alolyan and Simos [10],
the error increases as the sixth power of G. Forten-step predictor—corrector method
produced by Shokri [17], the error increases as the sixth power of G. For two-step
twelfthorder Obrechkoff method produced by Shokri [18], the errorincreases as the sixth
power of G. For twelfth order method with vanished phase—lag and its first derivative
produced by Alolyan and Simos [9], the error increases as the fifth power of G. For ten-step
twelfth order method with vanished phase—lag and its firstand second derivatives produced
by Alolyan and Simos [9], theerror increases as the fifth power of G. For ten-step
twelfthorder method with vanished phase—lag and its first, second and thirdderivatives
produced by Alolyan and Simos [9], the errorincreases as the fourth power of G . For the
new two-step Obrechkoff method with vanished phase—lag and its first, second,third and
fourth derivatives obtained in this paper, the errorincreases as the fourth power of G but it
has lower coefficientsthan the method developed in [9]. So, for the numericalsolution of the
time—independent radial Schrodinger equation thenew obtained two-step Obrechkoff
method with vanished phase—lag andits derivatives is the most accurate ones, especially for

largevalues of G| =]V, —E|. n

Remark 4.2. In Figures 4, 5, we present the s—vplane and behavior of stability
polynomial (respectively) for the method developed in this paper (sis frequency of test
problem and v is frequency of method).
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Figure 4: The stability region for the new method.

For the solution of the Schrodinger equation the frequency of the exponential fitting

is equal to the frequency of the scalar test equation. So, it is necessary to observe the
surroundings of the first diagonal of the s—v plane.

5. NUMERICAL RESULTS

5.1 THE METHODS

We have used several multistep methods for the integration of the five test problems. These
methods are

The ten-step tenth algebraic order method developed by Quinlan and Tremaine [15]
which is indicated as Method |I.

The twelve-step twelfth algebraic order method developed by Quinlan and
Tremaine [15] which is indicated as Method II.

The ten—step method with phase—lag and its first and second derivatives equal to
zero obtained in [9] which is indicated as Method IlI.

The ten—step method with phase—lag and its first, second and third derivatives equal
to zero obtained in [9] which is indicated as Method 1V.

The ten-step predictor—corrector method produced by Shokri [17], which is
indicated as Method V.
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e The new method obtained in this paper which is indicated as V1.

Figure 5: Behavior of the stability polynomial for the new method.
5.2. THE PROBLEMS

The efficiency of the new symmetric two-step Obrechkoff method will be measured
through the integration of five initial value problems with oscillating solution. In order to
apply the new method to the radial Schrodinger equation the value of parameter wis
needed. For every problem of the one-dimensional Schrddinger equation given by (1) the
parameter m is given by

=10 =V () -E], (25)

where V (x) is the potential and E is the energy.

Example 5.1. We consider the Schrddinger equation resonance problem. We will integrate
problem (1) with 1 =0 at the interval [0,15] using the well-known Woods—Saxon potential

Uy u,q o (X=%
(+q)" @rqf’ q_eXp( a J

where U, =50, a=0.6, X, =7, U, =% The behavior of the Woods—Saxonpotential is
a

V(x)=

shown in Figure 6 and with boundary condition y(0)=0. The potential V (x) decays more
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1(1+1)

)(2

quickly than

, so for large x (asymptotic region) the Schrddinger equation (1)

becomes

y"{'('xtl) V() E}y(x).

=204
—logwi E)

-304

-40

=50

Figure 6: The Woods-Saxon potential.

The last equation has two linearly independent solutions kxj,(kx) and kxn (kx), where j,
and n, are the spherical Bessel and Neumann functions respectively. When x— o
thesolution of Schrddinger has the asymptotic form

y(x) = Akxj, (kx) — Bkxn, (kx)

~ D{sin(kx—%ﬂj +tan(g, )cos(kx —%ﬂ

where ¢, is called scattering phase shift and it iscalculated by the following expression:

tan(5, ) _ Y(%)S(X.1) = Y(%i.1)S(X;) ’
Y(%.1)C (%) = y(X)C(X,,)
where S(X) =kxj, (kx), C(x)=kxn (kx) and x; <X, , both belong to the asymptotic region.

Given the energy we approximate thephase shift, the accurate value of which is =/2 for the
above problem.

We will use for the energy the value E =989.701916 . For some well-known
potentials, such as the Woods—Saxon potential, the definition of parameter @ is not given
as a function of x but based on some critical points which have been defined from the

i+l
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study of the appropriate potential (see for details [12]). For the purpose of obtaining our
numerical results it is appropriate to choose @ as follows (see for details [12]):

. JE+50 , xe[0,6.5],
1 JE , xe[6515].

Example 5.2. The almost periodic orbital problem studied by Franco and Palacios [7], can
be described by

y'+y=ceexpiyx), y(0)=1 y(0)=i, yeC
or equivalently by
u'+u=e¢cos(iyx), u(0)=1 u'(0)=0
{ v'+v =gsin(yx), u(0)=0, v'(0)=1
where ¢ =0.001 and w =0.01. The theoretical solution of this problem is given by
y(xX)=u(x)+iv(x), xeR, (26)
where

_ _ 2
u(x) =18—Wcos(x)+ i 5 COS(wX),
1-yw 1

2

2

l-esy — &
V(X):#

sin(x) + 5 Sin(wx).
1-y

This system of equations has been solved for x €[0,10007]. For this problem we use o =1.

Example 5.3. The almost periodic orbital problem studied by Stiefel and Bettis [24], can
be described by

y'+y=0.001lexp(ix), y(0)=1 y'(0)=0.9995, yeC
or equivalently by
u"+u =0.001cos(ywx), u(0)=1, u'(0)=0,
{v' +v =0.001sin(ywx), u(0)=0, v'(0)=0.9995i.

The theoretical solution of this problem is given by y(x) = u(x) +iv(x), u,ve R and

u(x) = cos(x) +0.0005cos(x),

v(x) =sin(x) +0.0005x cos(x).
This system of equations has been solved for x [0,10007]. For this problem we use o =1.

Example 5.4. (Inhomogeneous Equation) Consider the initial value problem

y"=-100y +99sin(x), y(0)=1 y(0)=11 te[0,1000z].
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With the exact solution y(t) =sin(t) +sin(10t)+cos(10t). For this problem we use @ =1.
Example 5.5. We consider the nonlinear undamped Duffing equation
y'=—y—-y*+Bcos(wx),  y(0)=0.200426728067, y'(0)=0, (12)

where B=0.002, @ =1.01 and x e {o, 41051”

}. We use the following exact solution for
(27), from [23],
3
g(x) = Y. Ky, c0((2i + Dex),

i=0

where {K1, K3.,Kg,K7}={0.2001794775 36,0.246946143 x 10_3, 0.304016 x 10_6 ,0.374 x 10_9}.

Resonance Problem. E=989.701916
-

Figure 7: Efficiency for the resonance problem using E = 989:701916.



A New Two-Step Obrechkoff Method with Vanished Phase-Lag 155

Franco-palacios

Figure 8: Efficiency for the Franco and Palacios equation.

Stifel-Bettis

Figure 9: Efficiency for the orbital problem by Stiefel and Bettis.
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Inhomogeneous

(//

Figure 10: Efficiency for the inhomogeneous equation.
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Figure 11: Efficiency for the Duffing Equation.
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4. CONCLUSIONS

In Figure 7, we see the results for the resonance problem for energy E =989.495874 . In
Figure 8, we see the results for the Franco—Palacios almost periodic problem, in Figure 9,
the results for the Stiefel-Bettis almost periodic problem are present, in Figure 10, the
results for the inhomogeneous equation are present and finally in Figure 11, we see the
results for the Duffing equation.

Among all the methods used the new symmetric two—step Obrechkoff method with
twelfth algebraic order and vanished some of its derivatives was the most efficient.
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