Mohajeri, A., Manshour, P., Mousaee, M. (2017). A novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies. Iranian Journal of Mathematical Chemistry, 8(2), 107-135. doi: 10.22052/ijmc.2017.27307.1101

A. Mohajeri; P. Manshour; M. Mousaee. "A novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies". Iranian Journal of Mathematical Chemistry, 8, 2, 2017, 107-135. doi: 10.22052/ijmc.2017.27307.1101

Mohajeri, A., Manshour, P., Mousaee, M. (2017). 'A novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies', Iranian Journal of Mathematical Chemistry, 8(2), pp. 107-135. doi: 10.22052/ijmc.2017.27307.1101

Mohajeri, A., Manshour, P., Mousaee, M. A novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies. Iranian Journal of Mathematical Chemistry, 2017; 8(2): 107-135. doi: 10.22052/ijmc.2017.27307.1101

A novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies

In this paper, a novel topological index, named M-index, is introduced based on expanded form of the Wiener matrix. For constructing this index the atomic characteristics and the interaction of the vertices in a molecule are taken into account. The usefulness of the M-index is demonstrated by several QSPR/QSAR models for different physico-chemical properties and biological activities of a large number of diversified compounds. Moreover, the applicability of the proposed index has been checked among isomeric compounds. In each case the stability of the obtained model is confirmed by the cross validation test. The results of present study indicate that the M-index provides a promising route for developing highly correlated QSPR/QSAR models. On the other hand, the M-index is easy to generate and the developed QSPR/QSAR models based on this index are linearly correlated. This is an interesting feature of the M-index when compared with quantum chemical descriptors which require vast computational cost and exhibit limitations for large sized molecules.

1. A.-L. Barabási, Linked: The New Science of Networks, Perseus Publishing, Cambridge, 2003. 2. A.T. Balaban, Chemical Applications of Graph Theory, Academic Press, London, 1976. 3. A.T. Balaban, From chemical graphs to 3D molecular modeling, in: A. T. Balaban (Ed.), From Chemical Topology to Three–Dimensional Geometry, Plenum Press, New York, 1997, pp. 1–24. 4. L. Euler, Solutio problematisadgeometriam situs pertinentis, Commentarii Academiae Scientiarum Petropolitanae 8 (1741) 128–140. 5. N. Trinajstić, Chemical Graph Theory, CRC Press, Florida, USA, 1992. 6. Q. Ivanciuc, QSAR comparative study of Wiener descriptors for weighted molecular graphs, J. Chem. Inf. Comput. Sci. 40 (2000) 1412–1422. 7. A. Mohajeri, M. Alipour, M. B. Ahmadi, A graph theory study on (ZnS)n (n= 3–10) nanoclusters, Chem. Phys. Lett. 503 (2011) 162–166. 8. A. Kurup, R. Garg, C. Hansch, Comparative QSAR study of tyrosine kinase inhibitors, Chem. Rev. 101 (2001) 2573–2600.

9. R. García–Domenech, J. Gálvez, J. V. de Julián–Ortiz, L. Pogliani, Some new trends in chemical graph theory, Chem. Rev.108 (2008) 1127–1169. 10. C. Cao, Y. Hua, Topological indices based on vertex, distance, and ring: On the boiling points of paraffins and cycloakanes, J. Chem. Inf. Comput. Sci. 41 (2001) 867–877. 11. H. Yuan, A. L. Parrill, QSAR development to describe HIV–1 integrase inhibition, J. Mol. Struct. (THEOCHEM) 529 (2000) 273–282. 12. A. Mohajeri, M. H. Dinpajooh, Structure–toxicity relationship for aliphatic compounds using quantum topological descriptors, J. Mol. Struct. (THEOCHEM) 855 (2008) 1–5. 13. B. Hemmateenejad, A. Mohajeri, Application of quantum topological molecular similarity descriptors in QSPR study of the O–methylation of substituted phenols, J. Comput. Chem. 29 (2008) 266–274. 14. R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley VCH, Weinheim, 2000. 15. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20. 16. A. T. Balaban, Highly discriminating distance–based topological index, Chem. Phys. Lett. 89 (1982) 399–404. 17. M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615. 18. H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339. 19. D. H. Rouvray, The role of the topological distance matrix in chemistry, in: N. Trinajstić (Ed.), Mathematics and Computational Concepts in Chemistry, Horwood, Chichester, 1986, pp. 295–306. 20. I. Gutman, J. H. Potgieter, Wiener index and intermolecular forces, J. Serb. Chem. Soc. 62 (1997) 185–192. 21. D. H. Rouvray, Should we have designs on topological indices? Chemical Applications of Topology and Graph Theory, Stud. in Phys. & Theoret. Chem., Elsevier, Amsterdam, 1983, pp. 159–177. 22. I. Lukovits, Wiener–type graph invariants, in: M. V. Diudea (Ed.), QSPR/QSAR Studies by Molecular Descriptors, Nova Science, Huntington, 2001, pp. 31–38. 23. I. Gutman, J. Žerovnik, Corroborating a modification of the Wiener index, Croat. Chem. Acta. 75 (2002) 603–612. 24. O. Ivanciuc, T. Ivanciuc, A. T. Balaban, Design of topological indices, part 10.1: Parameters based on electronegativity and covalent radius for the computation of

molecular graph descriptors for heteroatom–containing molecules, J. Chem. Inf. Comput. Sci. 38 (1998) 395–401. 25. F. Yang, Z. D. Wang, Y. P. Huang, X. R. Ding, Modification of Wiener index and its application, J. Chem. Inf. Comput. Sci. 43 (2003) 753–756. 26. F. Yang, Z. D. Wang, Y. P. Huang, P. J. Zhou, Modification of the Wiener index 2, J. Chem. Inf. Comput. Sci. 43 (2003) 1337–1341. 27. F. Yang, Z. D. Wang, Y. P. Huang, H. L. Zhu, Novel topological index F based on incidence matrix, J. Comput. Chem. 24 (2003) 1812–1820. 28. F. Yang, Z. D. Wang, Y. P. Huang, Modification of the Wiener index 4, J. Comput. Chem. 25 (2004) 881–887. 29. S. S. Tratch, M. I. Stankevitch, N. S. Zefirov, Combinatorial models and algorithms in chemistry. The expanded Wiener number–A novel topological index, J. Comput. Chem. 11 (1990) 899–908. 30. P. V. Khadikar, S. Karmarkar, A novel PI index and its applications to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934–949. 31. R. Walsh, Thermochemistry of Silicon–containing compounds, J. Chem. Soc. Faraday Trans. 79 (1983) 2233–2248. 32. X. Zhi-hong, W. Le-shan, The Data Base of Inorganic Chemical Thermodynamics, Science Press, Beijing, 1987. 33. J. G. Stark, H. G. Wallace, Chemistry Data Book, John Murray, London, 1982. 34. G. Gini, M. V. Craciun, C. König, Combining unsupervised and supervised artificial neural networks to predict aquatic toxicity, J. Chem. Inf. Comp. Sci. 44 (2004) 1897–1902. 35. Y. Xue, H. Li, C. Y. Ung, C. W. Yap, Y. Z. Chen, Classification of a diverse set of Tetrahymena pyriformistoxicity chemical compounds from molecular descriptors by statistical learning methods, Chem. Res. Toxicol. 19 (2006) 1030–1039. 36. T. W. Schultz, Tetratox: Tetrahymena pyriformis population growth impairment endpoint a surrogate for fish lethality, Toxicol. Mech. Method 7 (1997) 289–309. 37. D. R. Roy, R. Parthasarathi, B. Maiti, V. Subramanian, P. K. Chattaraj, Electrophilicity as a possible descriptor for toxicity prediction, Bioorg. Med. Chem. 13 (2005) 3405–3412. 38. C. L. Yaws, Chemical Properties Handbook, McGraw–Hill, New York, 1999. 39. E. Estrada, L. Rodriguez, A. Gutiétrez, Matrix algebraic manipulations of molecular graphs. 1. Distance and Vertex–Adjacency Matrices, MATCH Commun. Math. Comput. Chem. 35 (1997) 145–156. 40. R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1989.

41. D. R. Lide, G. W. A. Milne, Handbook of Data on Common Organic Compounds, CRC Press, Boca Raton, FL, 1995.

42. J. A. Dean, Lange’s Handbook of Chemistry, McGraw–Hill, New York, 1999. 43. A. A. Gakh, E. G. Gakh, B. G. Sumpter, D. W. Noid, Neural network–graph theory approach to the prediction of the physical properties of organic compounds, J. Chem. Inf. Comput. Sci. 34 (1994) 832–839.