Distance-Based Topological Indices and Double graph

Document Type: Research Paper

Author

ABDUS SALAM SCHOOL OF MATHEMATICAL SCIENCES, GOVERNMENT COLLEGE UNIVERSITY, LAHORE, PAKISTAN.

Abstract

Let $G$ be a connected graph, and let $D[G]$ denote the double graph of $G$. In this paper, we first derive closed-form formulas for different distance based topological indices for $D[G]$ in terms of that of $G$. Finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topological indices.

Keywords

Main Subjects


1. Y. Alizadeh, A. Iranmanesh, T. Dośolić, Additively weighted Harary index of
some composite graphs, Discrete Math. 313:1 (2013) 26–34.
2. M. V. Diudea, Indices of reciprocal properties or Harary indices, J. Chem. Inf.
Comput. Sci. 37 (1997) 292–299.
3. J. Devillers, A.T. Balaban (eds), Topological Indices and Related Descriptors in
QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
4. O. Ivanciuc, T. S. Balaban, Design of topological indices. Part 4. Reciprocal
distance matrix, related local vertex invariants and topological indices, J. Math.
Chem. 12 (1993) 309–318.
5. A. Ilić, I. Gutman, Eccentric connectivity index of chemical trees, MATCH
Commun. Math. Comput. Chem. 65 (2011) 731–744.

6. E. Munarini, C. Perelli Cippo, A. Scagliola, N. Zagaglia Salvi, Double graphs,
Discrete Math. 308 (2008) 242–254.
7. D. Plav s ić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the
characterization of chemical graphs, J. Math. Chem. 12 (1993) 235–250.
8. M. Randić, On the characterization of molecular branching, J. Amer. Chem.
Soc. 97 (1975) 6609–6615.
9. V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index: A novel
highly discriminating topological descriptor for structure-property and structureactivity
studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273–282.
10. R. Todeschini, V. Consonni, Handbook of molecular descriptors, Wiley−VCH,
Weinheim, (2000) 209–212.
11. N. Trinajstić, S. Nikolić, S. C. Basak, I. Lukovits, Distance indices and their
hyper-counterparts: Intercorrelation and use in the structure-property modeling,
SAR QSAR Environ. Res. 12 (2001) 31–54.
12. D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River,
NJ,1996.
13. H. Wiener, Structural determination of the paraffin points, J. Am. Chem. Soc.
69 (1947) 17–20.