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1. INTRODUCTION

In this paper, G is a simple connected graph with vertex set V = V(G) and edge set E =
E(G). The order |V| of G is denoted by n = n(G). For every vertex veV , the open
neighborhood N(v) is the set {u eV (G)|uv € E(G)} and the closed neighborhood of v is

the set N[v] = N(v) U{v}. The degree of a vertex veV is d, =| N(v)|. The minimum and

maximum degree of a graph G are denoted by 6 =6(G) and A=A(G), respectively. Trees
with the property A <4 are called chemical trees.

The Zagreb indices have been introduced more than thirty years ago by Gutman and
Trinajesti¢ in [6]. They are important molecular descriptors and have been closely
correlated with many chemical properties [6, 7]. Thus, it attracted more and more attention
from chemists and mathematicians [2, 3, 4, 8, 10, 11].

The first Zagreb index M1(G) is defined as follows:
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M,(G) = > d?.

veV

The first Zagreb index can be also expressed as the sum of vertex degree over edges of G,
that is, M1(G) = Zuveg(G) (dy +dy). Dosli¢ in [5] introduced a new graph invariant called

the first Zagreb coindex, as Ml(G) = YuveE(G)(dy +dy). Next we introduce a family of

trees. For n=(A-1)k + p (k>2), let T, be the family of trees of order n with maximum
degree A such that:
e If p=0, k-1 vertices have degree A, 1 vertex has degree A—2 and remaining
vertices are pendant.
e If p=1, k-1 vertices have degree A, 1 vertex has degree A—1 and remaining
vertices are pendant.
e If p=2, k vertices have degree A and remaining vertices are pendant.
e If p>3, k vertices have degree A, 1 vertex has degree p-1, and n—-k-1
remaining vertices are pendant.

Kovijani¢ Vukicevi¢ and Popivoda [9] proved the following upper bound on the first
Zagreb index of chemical trees and characterized all extreme chemical trees.

Theorem 1. Let T be a chemical tree with n>5 vertices. Then

6n-12 n=0,1(mod 3)
M(T)< .
6n—-10 otherwise,

with equality if and only if GeT,.
In this paper, we establish an upper bound on the first Zagreb index of trees in terms of

the order and maximum degree, as a generalization of aforementioned bound. As a
consequence, we obtain a lower bound on the first Zagreb coindex for trees.

2. MAIN RESULTS
In this section, we prove the following result:

Theorem 2. Let T be a tree of order n and maximum degree A.If n=p (mod A-1),
then
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(A+2)n-4A+4
M. (T) < (A+2)n-3A
ST (A+2)n-2A-2
(A+2)n—-2A-3+ p(p-2)

with equality if and only if GeT, .

p=0
p=1
p=2
p>3

2

To prove Theorem 2, we proceed with some definitions and lemmas. If n is a
positive integer, then an integer partition of n is a non-increasing sequence of positive
integers (&q,ay,...,8&) whose sum is n. If 1<g <ap <...<a <a, then (a,a,...,a,) is
called an integer partition of n on Ny ={1,2,...,a}. An integer partition (a,,a,,...,a,) of
n on N, is called an integer a-partition if the number of a in this partition is as large as

possible. In other words, if n=ka, then (a,...,a) is the integer a—partition and if n=ka+b
where 0<b<a then (ba... a) is the integer a—partition. The proof of the next result is
straightforward and therefore omitted.

Lemma 3. For positive integers n,t and a (1<i<t), we have
a) Ifn=a+a,+...+a and t >1, then n® >a2+a?+---+a’.

b) If a;<a;,then (a -1)*+(a; +1)* >a’ +aj +2.

Lemma 4. If (a,4a,,...,8,) is an integer partition of n=ka+b (0<b<a) on N,, then

t
> a? <ka®+b?.
i=1
Proof. Let (a,a,,...,8,) be an partition of n on N,.If a <a; <a for some 1<i= j<t,
then by switching (a;, ;) to (a; —1,a; +1), then we get a new integer partition of n on N,
Note that if &, —1=0, then we will remove &, —1 from the new partition. Applying Lemma
3 (a), we obtain

t
dai<al+-+(a-1)7++(@ +1)° +---+ ]

i=1

By repeating this process, we arrive at an integer a—partition of n on N, . It follows from

Lemma 2 that Z:zlaf < ka’ +b” and the proof is complete.
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Lemma 5. Let n=ka+b where 0<b<a and let (a,8a,,...,8,) be an integer partition of
n on N, which is not a—partition. Then the following statements holds:

a. 1fb>0,then Y. (a +1)* <k(a+1)* +(b+1).

b. 1fb=0,then > (a +1)* <k(a+1)’.

Proof. (a) Since n=a, +---+a =b+a+---+a=ka+b, we have t>k+1. First let
k

t =k +1. Then we have

(@l +---+a’)+t+2(ka+b)

< (ka®+b*)+t+2(ka+b)  (byLemma3)
k(a+1)*> +(0O+1)° +t—(k +1)

k(a+1)* + (b +1)?,

(a +1)° +---+(a +1)*

as desired. Now let t >k +1. Repeating the switching process described in the proof of
Lemma 4, ie. for any pair (a,a;) where 1<a <a;<a and using the fact that

a’+a; <(a —1)*+(a; +1)°~2, we get a; =0 or aj=a. To achieving an integer a-
partition, we need to apply the switching process at least t — (k +1) times. This implies that

al +--+af <ka®+b%—2(t—(k +1)). 1)
Thus

(a, +1)* +...+(a, +1)? (@2 +...+a?)+t+2(ka+b)

< ka®+b®=2(t—(k+1))+t+2(ka+b) (byinequality (1))
= Kk(a+1)?+(b+1)% —(t—(k+1))
< k(a+1)*+(b+1)>%.

() 1f b=0 thenn=4a, +---+a =a+---+a=ka. Since (a,...,8,) is not a—partition, we
k

have t >k . Applying (1), we obtain
( +1)° +---+(a +1)°

(@l +---+a’)+t+2ka
ka® —2(t —k) +t + 2ka
k(a+1)*+k—t
k(a+1)%

IA

A
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This completes the proof.

Remark 6. Let T be a tree of order n and maximum degree A. For each i €{1,2,...

let n, denote the number of vertices of degree i. Then
M+Ny+...4+4Ny =N
and
M +2Nny +...+Any =2n-2.
Subtracting (2) from (3), yields
Np+2ng+...+(A-1)np =n-2.
By (4), we obtain the following integer partition
(1,...,142,...,2,...,A-1,...,A-1),

—— — -
n2 n3 NA

75

A},

)

©)

(4)

()

of n—2 on Np_; ={1,2,...,A-1}. It follows from Lemma 4 that 22n2 +32n3 +...+A2nA

is maximum if and only if the partition (5) obtained from (4), is an (A—1)—partition of

n—2 on Nu_;. Inthat case, ny (the number of leaves) will be maximum.

Next result is an immediate consequence of above discussion.

Corollary 7. For any tree T of order n with maximum degree A, the first Zagreb index

Mq.(T)= n1+22n2 +-~-+A2nA is maximum if and only if the integer partition (5) is an

(A—1)—partition of n—2 on N,_;. In that case, the integer partition (n,n,,...

called an optimal solution of (4).

,nA) IS

Theorem 8. Let T be a tree of order n and maximum degree A with n=0 (mod A-1).

Then M1 (T) < (A+2)n—4A+4, with equality ifand only if T €T,

Proof. Assume that n = (A-1)k. By (4),
No+2N3+---+(A—2)Npy_q +2

Ny =k-— =k-r,
A ( A1 )
No+2n3+---+(A-2)n 2
where r=127°187% ;(1 AL+ . Then 1<r<k-1 and 1<n,<k-

consider three cases as follows:
Case 1.r =1. Then clearly n, =k —1. It follows that

No+2n3+--+(A-2)ny 1 +(A-1)(k -1)=(A-1)k -2

1. We
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and so
Ny +2M3+...+(A-2)Ny1 =A-3.
Thus ny_4 =0 and so
Ny +2ng+---+(A-3)Np_» =A-3. (6)
According to Corollary 6, the optimal solution of (6) is np=ng=---=n,_3=0 and
Na_» =1.Since m +ny +---+ny =n, we conclude that iy = (A—-2)k . By Corollary 7,
(M, Ng,...,NA_3,NA_2,Nx_1,Np) = ((A—-2)k,0,...,0,1,0k —1)
is the optimal solution and so M (T) is maximum. Therefore,
M{(T) <mq+22np+...+(A-2)2np_ o +(A-1)2ny 1 +A% 0\

=(A-2)k +(A-2)2 + A2 (k1)

=(A+2)(A-1)k-4A+4

=(A+2)n—-4A+4.

Case 2. 2<r<A. Then ny+2n3+...+(A-2)np1=(A-2)r+(r—2). Since
r—-2<A-2, it follows from Corollary 7 that
(Mg,No,.e e, Np_1,Npye.o N2, NA_1,NA) = ((A-2)k-1,0,...,0,1,0,...,0,r,k =)
is an optimal solution in this case. Since 2<r<A and 4<A, we have
r(r—2A-1)<—-4A+4 and so
M{(T) <(A-2)k-1+(r-1)%+(A-1)%r+A2(k -r)
=(A+2)(A-Dk +r(r—-2A-1)
<(A+2)n—4A+4.

Case 3. A<r<k-1. Then n,+2n,+...+(A-2)n, , =(A-2)r+(r—2). There
are non-negative integers t,s such that (r—-2)=t(A-2)+s and 0<s<A-2. Hence
No+2n3+...+(A-2)np 4 = (A-2)(r +t) +s. If 0<s<A-2, then
(M,No,...,Ng,Ns11,Ng 124, NA_2,NA_1,NA) = (A-2)k —(t +1),0....,0,1,0,...,0,r +t,k —r)
is the optimal solution and since (s—A) <0 and 4<A<r, we obtain

M{(T) <(A-2)k—(t+1)+(s+1)% +(A-1)2(r+t)+A%(k—r)
=(A+2)(A-1k+s(s+2)+r(1—2A)+tA(A-2)
=(A+2)n+(S—A)(S+2)—FrA+Tr
<(A+2)n+(s—=A)(S+2)—TrA+r
<(A+2)n—4A+4.

If s =0, then the optimal solution is
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(Ng,N9,...,NpA_2,NA_1,Nx) = ((A-2)k-t,0,...,0,r +t,k—T).
Since t(A-2)=r—-2-s, (s+2)>0 and 4<A<r, we conclude that

M1(T) <m+4ny +9n3+...+A2.nA
= (A=K 1)+ (A-D)2(r+t)+ A% (k 1)
= Ak — 2K —t+ A%r — 2Ar + 1 + A%t — 2At +t + A%k — A°r
=(A+2)n—(S+2)—-rA+r
<(A+2)Nn—rA+r
<(A+2)n-4A+4

Therefore, in all cases M,(T)<(A+2)n-4A+4. If TeT,,

77

then clearly

M1(T)=(A+2)n—4A+4. Conversely, let T be a tree of order n with n=0 (mod A-1)
n-A+1

and M(T) =(A+2)n—4A+4. This occurs only in Case 1, that is, T has k—-1=

A-1

vertices of degree A, one vertex of degree A—2 and (A—-2)k leaves. Hence T €T, and

the proof is complete.

Theorem 9. Let T be a tree of order n with maximum degree A and n=1(mod A -1).

Then M1(T) <(A+2)n—-3A, withequality ifandonly if T €T, .

Ny +2n3+...+(A-2)np4 +1
A-1

Ny +2n3+...+(A-2)ny4 +1
A-1

Thenclearly 1<r <k -1 and 1<n, <k -1. We consider three cases.

. By (4),

Proof. Let n=(A-1)k+1. Set r =

)=k-

na =k—(

Case 1. r=1. Since n,=k-1, it follows from
Ny +...+(A-2).ny4 = (A—2) and by Corollary 7
(Mg, N9, ..,NA_2,NA_1,NA) = ((A-2)k +1,0,...,0,1,k —1)
is the optimal solution. Thus
Mi(T) <mg+2%np+...+(A-2)%np o +(A-1)2np_q +A%Np
= ((A-2)k +1) +(A-1)2(1) + A% (k -1)
=(A+2)n-3A.

(4)

that
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Case 2. 2<r<A-1. As above, ny +...+(A-2).np_4 =(A-2)r+(r-1). Since
r-1<A-2, it follows from Corollary 7 that

(Mg, N9, Ne_1, N, Npigy-- NA_2, NA_1, N7 ) = ((A-2)K,0,...,0,1,0,...,0,r,k—T)
is the optimal soloution. Since 2<r<A-1, it is easy to see that
2A(1=r1)+(r? +r—2)<0 and we have

Mi(T) =ng+4ny+...+(A-2)2np_o+(A-1)%np 1 +A%0p
= (A=2k+r2@)+(A-1)2r + A% (k1)
= (A+2)(A-Dk +r2 +r1—2rA
= (A+2)N-3A+2A(L-1)+(r2 +1-2)
<(A+2)n-3A.

Case 3. A-1<r<k-1. There are non-negative integers ts such that
r-1=t(A-2)+s, t>1 and s<A-1. By substituting in (4), we have
No+2n3+...+(A—2)Np1 =(A-2)(r+t)+s. First let 0<s. Since s<A-2, it follows
from Corollary 7 that

(M, Ng,...,Ng,Ng11,Ng12,...,NA_2,NA_1,Np) = ((A-2)k -1,0,...,0,1,0,...,0,0,r +t,k —r)
is the optimal solution. Thus
Mi(T) <(A-2)k-t+(s+1)2+(A-1)2(r+t)+A2(k —r)
= (A+2)(A—1)k + (5+1)2 + r(1—2A) +tA(A - 2)
=(A+2)n-3A-s(A-s-2)—(r-1)(A-1)
<(A+2)n-3A.

Now let s = 0. Then the optimal solution is

(M,Np,...,NA_2,NAq,NA) = ((A-2)k -t +1,0,...,0,r +t,k—r)
and we have

M{(T) <(A—-2)k—-t+1+(A-1)2(r+t)+A%k-r)
=(A+2)(A-1Dk -r(A-1)+1+tA(A-2)
=(A+2)n-3A—-(A-1)(r-1)
<(A+2)n-3A.

As in the proof of Theorem 8 we can see that M4(T) = (A+2)n—3A if and only if
TeT .
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Theorem 10. Let T be a tree of order n with maximum degree A and n= p (mod A -1)
where 2< p<A-2.Then
(A+2)n—2A-2 p=2
M (T) <
(A+2)n-2A-3+p(p-2) p=3,

with equality ifand only if T €T,

Ny +2n3+...+(A=2)np_1+(2—p)

Proof. Let n=(A-1)k + p. Suppose that r = A1

. By (4),

we have

Ny +2n3+...+(A-2)npy_1 +(2-p)
A-1

Thenclearly 0<r<k-1and 1<n, <k.We consider four cases.

Ny =k—( )=k -—r.

Case 1. r=0. Then n, =k and we by (4) we have
No+2Mn3+--+(A-2)np1 =("n-2)—-((A-1)ny) =((A-1k+p-2)-(A-1)k=p-2.
If p=2, then np+2n3+...(A-2)hp_41=0. This implies that n, =nz=...=ny_4 =0
and ny =n—Kk by (2). Thus
M1(T) £n1+22n2+--~+(A—1)2.nA_1+A2.nA
= (n—k) + A%k
=n+(A+1)(A-1)k
=n+(A+1)(n-2)
=(A+2)n-2A-2.

Now let 2<p<A-2. Since 1<p-2<A-4 and
No+2n3+...(A—2)np_1 = p—2, it follows from Corollary 7 that
(M,N2,...,Np_2,Np_1Np,...,NA1,Nx) = (N -k -1,0,...,0,1,0,...,0,k)
is the optimal solution and so
(T) §n1+4n2+...+(A—1)2.nA_1+A2.nA
= (n—k-1)+(p-1)?(1) +A% (k)
= (A+1)(A-Dk+n+p2-2p
=(A+1)(n—p)+n+ p2—2p
=(A+2)n—pA+ p2—3p

M1max

Case 2. r =1. Then np =k -1 and
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(M,N2,...,Np_1,Np,Npya,..,NA—2,NA_1,MA) = ((A-2)k + p-1,0,...,0,1,0,...,0,1,k -1)
is the optimal solution and since p <A -2 we have
M1(T) =np+4ny +...+(A—1)2.HA_1+A2.HA
=(A=2)k+ p-1+ p2 +(A-1)2 + A% (k 1)
=Ak-2k+p-1+ p2 + A% Z2A +1+ A%k — A2
=(A+2)(A-1)k+ p+ p2—2A
=(A+2)(n—p)+ p+ p2 —2A
<(A+2)n—pA+ p2 -3p.

Case 3. 2<r<A-p. By (4), we have
No+2n3+...+(A=2)Ny_1 =(A-2)r+(p+r—-2). Since r—-2<A-2, it follows from
Corollary 7 that
(N, N2 Mpyr—2,Npir—1, Npsrs- NA—2,NA-1,NA) = (A-2)k + p-1,0,...,0,1,0,...,0,r, k =)
is the optimal solution. On the other hand, we deduce from p<A-2 and r<A-p that
r-1+2(p-A)<A-p-1+2(p-A)=p-A-1<0andso r(r-1+2(p-A)) <0. Thus

M1(T) £n1+4n2+...+(A—l)2.nA_1+A2.nA
=((A=2)k+ p-1)+(p+r-12(1)+(A-1)2(r) + A% (k - 1)
=Ak-2k+p-1+ p2+r2+1+2rp—2p—2r+rA2—2Ar+r+A2k—rA2
= (A+2)(A-1)k + p2 — p—2Ar +r(r +2p-1)
=(A+2)(n-p)+ pz—p—ZAr+r(r+2p—l)
=(A+2)n—pA+ p2—3p+r(r—1+2(p—A))
<(A+2)n-pA+ p2—3p:M1maX(T)

Cased. A—p<r<k-1. Letp+r-2=t(A-2)+s. By substituting in (4), we have
No+2ng+...+(A-2)np_1 =(A=2)(r +t)+s. If s =0 then by Corollary 7,
(M,No,..sNA_2,NA1,NA) = ((A=2)k+ p—1,0,...,0,r +t,k —r)
is the optimal solution. Since A—p<r and p<A-2, we have

2p- p2+ PA—Ar—2A+r) =p(A—p+2)—Ar—2A+r
<p(r+2)—Ar—2A+r
=(p-A)(r+2)+r
<(p=A)(r+2)+(r+2)
=(p-A+1)(r+2)<0.
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Thus

Ml(T) :n1+4n2 +...+(A—1)2.HA_1+A2.HA
=((A-2k+p-1)+(A-12r+t)+ A2 (k —r)
= (A%K + Ak - 2K) + At (A= 2) + p— 2Ar +T
=(A+2)(N—p)+At(A—2)+ p—2Ar+r
=(A+2)N—pA-2p+ pPA+Ar+p—-2A—-2Ar+r
=(A+2)n—pA+ p2—3p+(2p— p2+ PA —Ar —2A +r)
<(A+2)n—pA+ p2—3p.

Now let 0<s. Since s<A-2, it follows from Corollary 7 that
(M, Ng,...,Ng,Ng11,Ng12,...,NA_2,NrA1,NA) = ((A-2)k + p—(t +1),0....,0,1,0....,0,0,r +t,k — 1)
is the optimal solution. Since 2< p<A-2 and 0<s<A-3, it is straightforward to verify

that pA— p2+2p+32+23—Ar+r—2A—A3<0. Thus

M1(T) =m+4ny +-~-+(A—1)2.nA_1+A2.nA
=(A—2k+p—(t+1)+(s+D2 - (A-D)2(r +t)+ A2 (k —r)
:(A2k+Ak—2k)+ p+32+23—2Ar+r+A2t—2At
=(A+2)(A-1)k+ p+82 + 25— 2Ar + 1+ At(A—2)
=(A+2)(n—p) + p+32+23—2Ar+r+A(p+r—2—s)
=(A+2)n- p+32+23—Ar+r—2A—As
=(A+2)n—pA+ p2—3p+(pA— p2+2p+32+23—Ar+r—2A—As)
<(A+2)n—pA+ p2—3p.

Therefore, in all cases Mq(T)<A+2)n—pA+ p2—3p. As in the proof of
Theorem 8, we can see that
(A+2)n—2A-2 p=2
M(T) =
(A+2)n-2A-3+p(p-2) p=3,

ifand only if T € T,. This completes the proof.

We now present a lower bound on the first Zagreb coindex among all trees. Ashrafi
et al. [1] proved that for any conneted graph G of order n and size m

M1(G) = 2m(n—1)— M{(G).
Next result is an immediate consequence of this equality and Theorem 1.
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Corollary 11. Let T be a tree of order n with maximum degree A. If n=p (mod A-1),
then
—(A+6)n+2n2+4A—2
Ml(T)S —(A+6)n+2nz+3A+2
—(A+6)Nn+2n° +2A+4
—(A+6)n+2n2 +pA+2-p(p-3)
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