An Upper Bound on the First Zagreb Index in Trees

Document Type: Research Paper


1 Azarbaijan Shahid Madani University, Tabriz, Iran

2 Institute for Research in Fundamental Sciences, Tehran, Iran


In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.


Main Subjects

[1] A. R. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations,
Discrete Appl. Math. 158 (2010), 1571–1578.
[2] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph,
Kragujevac J. Math. 25 (2003), 31–49.
[3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math.
285 (2004), 57–66.
[4] D. de Caen, An upper bound on the sum of squares in a graph, Discrete Math. 185
(1998), 245–248.
[5] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars. Math.
Contemp. 1 (2008), 66–80.
[6] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total -electron energy
of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.
[7] X. L. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure
Descriptors, Mathematical Chemistry Monograph 1, University of Kragujevac, 2006.
[8] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after,
Croat. Chem. Acta 76 (2003), 113–124.
[9] Ž. Kovijanić Vukićević, G. Popivoda, Chemical trees with extreme values of Zagreb
indices and coindices, Iranian. J. Math. Chem. 5 (2014) 19–29.
[10] S. Zhang, W. Wang, T. C. E. Cheng, Bicyclic graphs with the first three smallest and
largest values of the first general Zagreb index, MATCH Commun. Math. Comput. Chem.
56 (2006), 579–592.
[11] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices,
Chem. Phys. Lett. 394 (2004), 93–95.