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1 INTRODUCTION 

There are many problems in mathematics, chemistry, physics and some engineering 
sciences which are connected to the second-order differential equations. For example, in 
the process of the formation of methyliodide (CH3I) by the biological and photochemical 
production mechanisms in a biogeochemical module, the following equation appears: 

                                 ),(
dz
dcA

z
FSP

dt
dc

Seaair 


                                            (1) 

which describes the evolution of methyl iodide concentration (c [mmolm−3]) over time 
under production (P), degradation (S), air–sea exchange (F), as well as turbulent vertical 
diffusion (Aν−diffusion coefficient) (see [26]). Using the separation of variables technique 
we can transform the equation (1) to the following second-order differential equation: 
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x
Ay                                                    (2) 

where λ is the spectral parameter, A is a real number, the potential q(x) is real-valued. 
Equation (2) has a singularity at the endpoint x = 0. For other examples, in quantum 
chemistry or quantum mechanics, we refer to the quantum modeling of the hydrogen atom, 
or the Hellman equation to finding an approximation for the simplified description of 
complex systems, which can be transformed to (2) (see also [3, 4, 6, 13, 15, 17, 24]). 
 Inverse problems associated with the equation (2) with A=0 have various versions. 
The first version was studied by Borg and Levinson, and it is shown that the potential q(x) 
can be uniquely determined from the given boundary condition and one possible reduced 
spectrum [5, 18]. For the second version, using two spectra λn and λˊn, Marchenko uniquely 
determined the potential q(x) and the corresponding boundary conditions [20]. Finally, 
Gelfand and Levitan proved that q(x) uniquely determined by the spectral function [12].  

Some inverse problems having singularities or turning points, and/or discontinuity 
conditions were studied by the above methods in many works (see [1, 2, 8-11, 16, 19, 23, 
27]). Note that, in [22], we considered a second-order differential equation of Sturm-
Liouville type having two turning points and singularities in a finite interval. Then, its 
asymptotic form of the solutions was studied, and obtained the infinite representation of the 
solutions of differential equation which plays an important role in investigating the 
corresponding inverse problem.          
 In later years, in some interesting works but without singularity, inverse problems 
were investigated using a new spectral data which are so-called nodal points, and their 
corresponding inverse problems are so-called inverse nodal problems. Mclaughlin seems to 
have been the first to consider this method for the one-dimensional Schrödinger equations 
[21]. For other works, see also [7, 14, 25]. 
 In this work, we consider the inverse nodal problem associated with the singular 
differential equation (2) and the Dirichlet boundary condition  
                                                        ),1(0)0( yy                                                              (3) 
on the interval (0,1). We also assume that 
                                                     ),1,0()( 122 0 Lxxq k                                                        (4) 
where k0 is a member of {2,3,4,…}. The problem (2)-(3) has infinitely many nontrivial 
solutions. The values of λ for which there exist nontrivial solutions are so-called 
eigenvalues, and their corresponding nontrivial solutions y(x,λ) are so-called 
eigenfunctions. All the eigenvalues are real and the set of the eigenvalues is countably 
infinite, and also the eigenvalues can be arranged in increasing order as follows 
 

                                                         ...,321     
such that λn as n. In the present paper, first, we obtain the asymptotic formula for 
the eigenvalues, the nodes of the eigenfunctions and the nodal lengths (Section 2). Then, 
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we prove that the set of the nodal points of the boundary value problem (2)−(3) is dense in 
the interval (0,1) and the potential q(x) can be uniquely determined from this new kind of 
spectral data (see Section 3). 
 
2 ASYMPTOTIC FORMULA FOR NODAL POINTS 

We consider the boundary value problem L=L(q(x)) defined by (2)-(3). Assume that in (2), 

                                      ,
4
12 A  ,

2
1

0  k    ,...4,3,20 k .                                     (5)      

From [11], we know that the equation (2) has two solutions y1(x,λ) and y2(x,λ), 
which are linearly independent with respect to x, and also have the following asymptotic 
forms as  λ : 

                                     00
12/)1(

1 ]1[]1[)1(),( 00 xixikk eexy    ,                            (6) 

                                     0
1

0
2/

2 ]1[)1(]1[
4
1),( 00 xikxik eeixy    ,                        (7) 

where ))((1]1[ 1
0

 xO  . Therefore, the solution y(x,λ) of the equation (2) under the 
condition y(0)=0 can be written as a linear combination of y1 and y2. Also, since the 
boundary value problem L is self-adjoint and y1, y2 are entire in λ, thus all of the 
eigenvalues of L are real and simple. In the case when k0 is odd, it follows from (3), (7) that 
y(x,λ)= y2(x,λ) and the asymptotic form of the eigenvalues as follows 

                                                        







n
Onqn

1)(  .                                                  (8) 

Similarly, in the case when k0 is even, we derive from (3), (6) that y(x,λ)= y1(x,λ)  
and also the eigenvalues of L may be calculated as (8). 
 For the boundary value problem L an analog of Sturm's oscillation theorem is true. 
More precisely, the eigenfunctions yn(x)= y(x,λn) has exactly n-1 (simple) zeros inside the 
interval (0,1), namely: 

1...0 )1()2()1(  n
nnn xxx . 

The set 
                                               )(: j

nL xX  ,   1n ,    1,1  nj ,                                       (9) 
 

is called the set of nodal points of the problem L. Also, let 
],[: )1()()(  j

n
j

n
j

n xxI  
 

be the jth nodal domain of the nth eigenfunction yn, and let 
)()1()()( : j

n
j

n
j

n
j

n xxI    
 

be the associated nodal length. Inverse nodal problems consist in recovering the potential 
q(x) from the given set XL of nodal points or from a certain its part. 
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Now, in the following theorem, we develop asymptotic expressions for nodal points 
)( j

nx  and the nodal lengths )( j
n  (n=1,2,3,…, j=1,2…,n-1) at which yn, the eigenfunction 

corresponding to the eigenvalue λn of the problem L, vanishes. 
 

Theorem 1. We consider the equation (2) under Dirichlet boundary condition (3). Let q(x) 
satisfies (4), then the nodal points of the problem L defined by (2)-(3) are 

                                                                        



















,1,...,3,2,1,...,3,2,1

,1)(

njn
n

O
n
jx j

n
                                              (10) 

and the nodal lengths are  









n
O

n
j

n
11)( . 

Proof. Suppose ν=k0-1/2 and k0 is odd. Then, by (7)-(8) and solving y2(x,λn)=0, we 
approximate the nodal points of the form (10). Similarly, in the case when k0 is even, using 
(6), (8) and from y1(x,λn) = 0 we arrive at (10). Moreover, 
                                        )()1()( j

n
j

n
j

n xx     
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                                              







n
O

n
11 .                                                                             □ 

Theorem 1, specially the relation (10), provide the sufficient conditions for the 
uniqueness theorem in the next section. 
 

3 THE UNIQUENESS THEOREM 

In this section, we show that the set of the nodal points )( j
nx of the form (10) is dense in 

(0,1). Then, we prove a uniqueness theorem for the solution of the inverse nodal problem 
associated with the boundary value problem L. 
 

 First, we consider the equation    
  

                                          ,0),(),(   xwxw     10  x ,                                       (11) 

with the boundary conditions 
                                                    ),1(0),0(  ww  .                                                      (12) 

It is easily shown that the solution of the problem (11)-(12) is )sin(),( xxw   . 
Furthermore, the exact eigenvalues of the problem L0 defined by (11)-(12) are 



The Uniqueness Theorem for Inverse Nodal Problems with a Chemical Potential         407 

 

                                                             ,22 nn                                                               (13) 
and their corresponding eigenfunctions are 
                                                 )sin(),()( xnxwxw nn   .                                             (14) 

Since for each n {2,3,4,…} there exist k {0,1,2,…} and m {1,2,…,2k} such 
that n=2k+1-m+1, so according to (13)-(14), the set 
 

 kk mkm 2,...,2,1,...,2,1,0|)12( 221   , 

consists of all eigenvalues of (11)-(12) except 1=2. Moreover, the eigenfunction 
corresponding to the eigenvalue n=(2k+1-m+1)2 is  
 

))12sin((),( 1 xmxw k
n    , 

 

so that m/(2k+1-m+1) is a zero of the eigenfunction wn(x). Therefore, the set of the nodal 
points of L0 is  
                                 

1,1,
:

0 


njjn
j

nLX   

                                         02,...,2,1,...,2,1,0|
12 1 


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k

k mk
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Lemma 1. The set 
0LX , defined by (15), is dense in [0,1].  

 

Proof. For each fixed k {0,1,2,…}, we have 
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Moreover,  

                                         11 2
10

2
1

  kk ,          
12

1
12

21





 kk

k

,                                 (16) 
 

and for m=1,2,…,2k−1,  

121)1(2
1: 11,







  m
m

m
m

kkkm  

                                                   
)12()2(

12
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1



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

mm kk
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Hence, there exists a sufficiently large number k  such that for each kk   we have  
 

                                                             
1

1
,




k
km .                                                           (17) 
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Now, let :,kmx m/(2k+1−m+1). Then, for each ]1,0[x , there exists m {1,2,…,  
2k−1} such that 
                                    ],0[ ,1 kxx    ],[ ,1, kmkm xxx     ]1,[ ,2 kkxx .                             (18) 
 

On the other hand, the right sides of equations (16) and (17) tend to zero as k . 
This together with the equation (18) completes the proof.                                                    □ 
 
Theorem 2. The set of the nodal points of the boundary value problem L, XL, is dense in 
the interval (0,1).  
                          

Proof. It follows from (15) that the nodal points )( j
n  of L0 have the form 

n
jj

n )( ,      2n ,  1,...,3,2,1  nj . 

Thus, using (10) we obtain 

                                                     







n
Ox j

n
j

n
1)()(  .                                                        (19) 

By (19) and Lemma 1, we conclude that XL is dense in (0,1).                                   □  
 
 Now, we prove the main result of this section. 
 
Theorem 3. Consider the boundary value problems defined by 
 

                                 ,0)(2 





  yxq

x
Ay i     2,1i ,   )1,0(x ,                             (20) 

 

and Dirichlet condition 
 

                                                         )1(0)0( yy  .                                                         (21) 
 

Let 21, qq , satisfy the condition (4) and )()( 2
)(

1
)( qxqx j

n
j

n  . Then 21 qq   (a.e.). 
 

Proof. First, we consider the case when k0 is odd, in (5). Let x be an arbitrary, fixed number 
in the interval [0,1]. Since the set of the nodal points XL, defined in (9), is dense in the 
interval (0,1) by Theorem 2, it follows that there exists a subsequence {nk}, k=1,2,3,…, 
such that 
 

                                                          xx j
nk k


)(lim .                                                        (22) 

 

Let ))(,()(~
2 ini qxyxy

k
  be the solution of (20)-(21) with the potential qi(x). Then, 

using (20) we derive                               
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  )(~)(~)()()()())('~~'~~( 2121212112 xyxyqqxqxqxyyyy
dx
d

kk nn   .                (23)    
 

Integrating (23) from 0  to )()(:),( 2
)(

1
)()( qxqxxnjx j

n
j

n
j

nk kkk
 , we get 

 

         
),(

0 212121
),(

02112 )(~)(~)()()()(|))('~~'~~( k

kk

k
njx

nn
njx dttytyqqtqtqxyyyy  .      (24) 

 

Since 0)),((~)),((~
21  kk njxynjxy , the left side of (24) is equal to zero for each 

k {1,2,3,…}. Thus,  
 

         0)(~)(~)()()()(
),(

0 212121 
k

kk

njx

nn dttytyqqtqtq  , 
 

for ,...3,2,1k . We are done if we can show 

0))()((
0 21  dttqtq
x

. 

For this goal, by (8) we have 
 

0)()( 21  qq
kk nn    as k . 

 

Hence, together with (22) and (24) these results imply 
 

                                      0)(~)(~))()((lim
0 2121

22 

x

kk dttytytqtqn  .                              (25) 
 

Moreover, it follows from (7) that there exists a constant C such that for sufficiently 
large k, we have  
 

322
21 )()(sin)()(~)(~    kkk nCxnnxyxy . 

  

So,  
 

                                        )(sin)(~)(~ 2
21

22 xnxyxyn kk   ,    k .                                   (26) 
 

Therefore, by (25)(26) we get 
 

                                                    0))()((
0 21 
x

dttqtq .                                                   (27) 
 

Finally, since x  was chosen arbitrary in the interval [0,1], together with (27) this 
yields q1=q2 (a.e.). In the case when k0 is even, Theorem 3 can be proved similarly, by (6) 
and the same way as above.                                                                                                   □ 
 
 Theorem 3 shown that the solution of the inverse nodal problem associated with 
(2)−(3), the potential function q(x), can be uniquely determined by a dense set of nodes of 
the eigenfunctions. 
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